def upload_image_file(): print("root testing", request.files) print(">>>>>") print(user_name) if request.method == "POST": # check wether the request value is print("upload file", request.files) if "file" in request.files: # get the multiDict file = request.files.getlist("file")[0] print("upload file", request.files) # secure the filename which will only give file name excluding other parameters filename = secure_filename(file.filename) #print(filename , " " , dir(file.stream)) # get the file path path = os.path.join(UPLOAD_FOLDER, filename) file.save(path) infer = Inference(user_name) result = infer(path) return render_template("result.html", name=user_name, result=result, image_path=os.path.join( SUB_UPLOAD_FOLDER, filename)) else: return render_template("result.html") else: return render_template("result.html")
import sys, os, shutil sys.path.append(os.getcwd()) from src.inference import Inference from flask import Flask, request, flash, redirect, render_template, url_for, Markup, send_file, send_from_directory from werkzeug.utils import secure_filename infer = Inference() app = Flask(__name__) app.secret_key = "!@#$%^&*()a-=afs;'';312$%^&*k-[;.sda,./][p;/'=-0989#$%^&0976678v$%^&*(fdsd21234266OJ^&UOKN4odsbd#$%^&*(sadg7(*&^%32b342gd']" # the upload path for all the files UPLOAD_FOLDER = "static/uploadFolder" # a list to track all the files loaded in memory app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER list_of_uploaded_file = [] def clean_upload_folder(): try: shutil.rmtree(UPLOAD_FOLDER) except FileNotFoundError as e: pass def make_directory(): os.makedirs(UPLOAD_FOLDER, exist_ok=True) @app.route('/') def root(): # clean the upload directory every time user use the website and create a new empty directory
def infer(): # load infer data, need to fix #TODO loadFile = True ifLoad, data = False, None loaddict, dicts = load_file(cfg.dict_path, 'dict', 'pickle') if not loaddict: raise (ValueError, 'dict load failed') if loadFile: ifLoad, data = load_file(cfg.processed_path, 'processed data', 'pickle') if not ifLoad or not loadFile: train_data_obj = Dataset(cfg.train_data_path, 'train', dicts=dicts, language_type='es', unlabeled_file_path=cfg.unlabeled_data_path, emb_file_path=cfg.emb_es_path) dev_data_obj = Dataset(cfg.dev_data_path, 'dev', dicts=dicts) test_data_obj = Dataset(cfg.test_data_path, 'test', dicts=dicts) save_file( { 'train_data_obj': train_data_obj, 'dev_data_obj': dev_data_obj, 'test_data_obj': test_data_obj }, cfg.processed_path) # train_data_obj.save_dict(cfg.dict_path) else: train_data_obj = data['train_data_obj'] dev_data_obj = data['dev_data_obj'] test_data_obj = data['test_data_obj'] infer_data_obj = Dataset(cfg.infer_data_path, 'infer', dicts=dicts) # load model emb_mat_token = train_data_obj.emb_mat_token # need to restore model with tf.variable_scope(network_type) as scope: if network_type in model_type_set: model = Model(emb_mat_token, len(train_data_obj.dicts['es']), 100, scope.name) graphHandler = GraphHandler(model) #evaluator = Evaluator(model) inference = Inference(model) if cfg.gpu_mem < 1: gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=cfg.gpu_mem, allow_growth=True) else: gpu_options = tf.GPUOptions() graph_config = tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True) sess = tf.Session(config=graph_config) graphHandler.initialize(sess) saver = tf.train.Saver() step = cfg.load_step model_path = os.path.join(cfg.ckpt_dir, 'top_result_saver_step_%d.ckpt' % step) saver.restore(sess, model_path) logits_array, prob_array = inference.get_inference(sess, infer_data_obj) inference.save_inference(prob_array, cfg.infer_result_path)
random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if config['CUDA']: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def handle_model(engine, model_path="/data/egg/lego.egg"): model = engine.load_model(path=model_path) meshes = parse_model_geometry(model) mesh = meshes[0] renderable_obj = RenderableMesh(mesh) engine.clear_renderables() engine.add_renderable(renderable_obj) engine.start_rendering_loop() config = load_config() set_seed(config) if config['RENDERING']['RENDERING_ENGINE_ON']: engine = RenderEngine(rendering_config=config['RENDERING']) else: engine = None inferer = Inference(config=config, engine=engine) inferer.infer()
import sys, os, shutil sys.path.append(os.getcwd()) from src.inference import Inference from flask import Flask, request, flash, redirect, render_template, url_for, Markup, send_file, send_from_directory from werkzeug.utils import secure_filename infer = None args = list(sys.argv) if len(args) > 1: infer = Inference(args[1]) else: infer = Inference('densenet') app = Flask(__name__) app.secret_key = "!@#$%^&*()a-=afs;'';312$%^&*k-[;.sda,./][p;/'=-0989#$%^&0976678v$%^&*(fdsd21234266OJ^&UOKN4odsbd#$%^&*(sadg7(*&^%32b342gd']" # the upload path for all the files SUB_UPLOAD_FOLDER = "static/uploadFolder" UPLOAD_FOLDER = "flask_api/" + SUB_UPLOAD_FOLDER # a list to track all the files loaded in memory app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER list_of_uploaded_file = [] def clean_upload_folder(): try: shutil.rmtree(UPLOAD_FOLDER + "/") except FileNotFoundError as e: pass