Пример #1
0
    def display_test(self, dataset, mode):
        self.roes = {
            'Rots': [],
            'yaws': [],
        }
        self.to_open_vins(dataset)
        for i, seq in enumerate(dataset.sequences):
            print('\n', 'Results for sequence ' + seq )
            self.seq = seq
            # get ground truth
            self.gt = dataset.load_gt(i)
            Rots = SO3.from_quaternion(self.gt['qs'].cuda())
            self.gt['Rots'] = Rots.cpu()
            self.gt['rpys'] = SO3.to_rpy(Rots).cpu()
            # get data and estimate
            self.net_us = pload(self.address, seq, 'results.p')['hat_xs']
            self.raw_us, _ = dataset[i]
            N = self.net_us.shape[0]
            self.gyro_corrections =  (self.raw_us[:, :3] - self.net_us[:N, :3])
            self.ts = torch.linspace(0, N*self.dt, N)

            self.convert()
            self.plot_gyro()
            self.plot_gyro_correction()
            plt.show()
Пример #2
0
    def integrate_with_quaternions_superfast(self, N, raw_us, net_us):
        imu_qs = SO3.qnorm(SO3.qexp(raw_us[:, :3].cuda().double()*self.dt))
        net_qs = SO3.qnorm(SO3.qexp(net_us[:, :3].cuda().double()*self.dt))
        Rot0 = SO3.qnorm(self.gt['qs'][:2].cuda().double())
        imu_qs[0] = Rot0[0]
        net_qs[0] = Rot0[0]

        N = np.log2(imu_qs.shape[0])
        for i in range(int(N)):
            k = 2**i
            imu_qs[k:] = SO3.qnorm(SO3.qmul(imu_qs[:-k], imu_qs[k:]))
            net_qs[k:] = SO3.qnorm(SO3.qmul(net_qs[:-k], net_qs[k:]))

        if int(N) < N:
            k = 2**int(N)
            k2 = imu_qs[k:].shape[0]
            imu_qs[k:] = SO3.qnorm(SO3.qmul(imu_qs[:k2], imu_qs[k:]))
            net_qs[k:] = SO3.qnorm(SO3.qmul(net_qs[:k2], net_qs[k:]))

        imu_Rots = SO3.from_quaternion(imu_qs).float()
        net_Rots = SO3.from_quaternion(net_qs).float()
        return net_qs.cpu(), imu_Rots, net_Rots
Пример #3
0
    def display_test(self, dataset_class, dataset_params, mode):
        dataset = dataset_class(**dataset_params, mode=mode)
        for i, seq in enumerate(dataset.sequences):
            print('\n',
                  '---------  Result for sequence ' + seq + '  ---------')
            self.seq = seq
            # get ground truth pose
            self.gt = dataset.load_gt(i)
            self.gt['Rots'] = SO3.from_quaternion(self.gt['qs'].cuda()).cpu()

            # get data and estimate
            self.us, self.zupt = dataset[i]
            self.iekf = self.get_iekf_results(seq)
            self.N = self.iekf['ps'].shape[0]
            N0 = self.us.shape[0] - self.N
            self.us = self.us[N0:]
            self.zupt = self.zupt[N0:]
            for key, val in self.gt.items():
                self.gt[key] = val[N0:]
            self.ts = torch.linspace(0, self.N * self.dt, self.N)

            self.align_traj()
            self.convert()
            self.plot_orientation()
            self.plot_velocity()
            self.plot_velocity_in_body_frame()
            self.plot_position()
            self.plot_horizontal_position()
            self.plot_bias_gyro()
            self.plot_bias_acc()
            self.plot_gyro()
            self.plot_acc()
            self.plot_zupt()
            self.plot_orientation_err()
            self.plot_velocity_err()
            self.plot_body_velocity_err()
            self.plot_position_err()
Пример #4
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        f = os.path.join(self.predata_dir, 'dataset-room1_512_16_gt.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv")
            path_gt = os.path.join(data_dir, seq, "mav0", "mocap0", "data.csv")
            return path_imu, path_gt

        sequences = os.listdir(data_dir)

        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            if 'room' not in sequence:
                continue

            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
            gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            ts = imu[:, 0] / 1e9

            # interpolate
            t_gt = gt[:, 0] / 1e9
            gt = self.interpolate(gt, t_gt, ts)

            # take ground truth position
            p_gt = gt[:, 1:4]
            p_gt = p_gt - p_gt[0]

            # take ground true quaternion pose
            q_gt = SO3.qnorm(torch.Tensor(gt[:, 4:8]).double())
            Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu()

            # convert from numpy
            p_gt = torch.Tensor(p_gt).double()
            v_gt = torch.zeros_like(p_gt).double()
            v_gt[1:] = (p_gt[1:] - p_gt[:-1]) / self.dt
            imu = torch.Tensor(imu[:, 1:]).double()

            # compute pre-integration factors for all training
            mtf = self.min_train_freq
            dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:])
            dRot_ij = SO3.dnormalize(dRot_ij.cuda())
            dxi_ij = SO3.log(dRot_ij).cpu()

            # masks with 1 when ground truth is available, 0 otherwise
            masks = dxi_ij.new_ones(dxi_ij.shape[0])
            tmp = np.searchsorted(t_gt, ts[:-mtf])
            diff_t = ts[:-mtf] - t_gt[tmp]
            masks[np.abs(diff_t) > 0.01] = 0

            # save all the sequence
            mondict = {
                'xs': torch.cat((dxi_ij, masks.unsqueeze(1)), 1).float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")

            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")
Пример #5
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        f = os.path.join(self.predata_dir, 'MH_01_easy.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv")
            path_gt = os.path.join(data_dir, seq, "mav0",
                                   "state_groundtruth_estimate0", "data.csv")
            return path_imu, path_gt

        sequences = os.listdir(data_dir)
        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
            gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            ts = imu[:, 0] / 1e9

            # interpolate
            gt = self.interpolate(gt, gt[:, 0] / 1e9, ts)

            # take ground truth position
            p_gt = gt[:, 1:4]
            p_gt = p_gt - p_gt[0]

            # take ground true quaternion pose
            q_gt = torch.Tensor(gt[:, 4:8]).double()
            q_gt = q_gt / q_gt.norm(dim=1, keepdim=True)
            Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu()

            # convert from numpy
            p_gt = torch.Tensor(p_gt).double()
            v_gt = torch.tensor(gt[:, 8:11]).double()
            imu = torch.Tensor(imu[:, 1:]).double()

            # compute pre-integration factors for all training
            mtf = self.min_train_freq
            dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:])
            dRot_ij = SO3.dnormalize(dRot_ij.cuda())
            dxi_ij = SO3.log(dRot_ij).cpu()

            # save for all training
            mondict = {
                'xs': dxi_ij.float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")
            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")