Пример #1
0
    def _top_down_pose_kernel(self, geo_affinity_mat, matched_list, pose_mat,
                              sub_imgid2cam):
        multi_pose3d = list()
        chosen_img = list()
        for person in matched_list:
            Graph = geo_affinity_mat[person][:, person].clone().numpy()
            Graph *= (1 - np.eye(Graph.shape[0]))  # make diagonal 0
            if len(Graph) < 2:
                continue
            elif len(Graph) > 2:
                if self.cfg.use_mincut:
                    cut0, cut1 = find_mincut(Graph.copy())
                    cut = cut0 if len(cut0) > len(cut1) else cut1
                    cut = cut.astype(int)
                    sub_imageid = person[cut]
                else:
                    sub_imageid = get_min_reprojection_error(
                        person, self.dataset, pose_mat, sub_imgid2cam)
            else:
                sub_imageid = person

            _, rank = torch.sort(
                geo_affinity_mat[sub_imageid][:, sub_imageid].sum(dim=0))
            sub_imageid = sub_imageid[rank[:2]]
            cam_id_0, cam_id_1 = sub_imgid2cam[sub_imageid[0]], sub_imgid2cam[
                sub_imageid[1]]
            projmat_0, projmat_1 = self.dataset.P[cam_id_0], self.dataset.P[
                cam_id_1]
            pose2d_0, pose2d_1 = pose_mat[sub_imageid[0]].T, pose_mat[
                sub_imageid[1]].T
            pose3d_homo = cv2.triangulatePoints(projmat_0, projmat_1, pose2d_0,
                                                pose2d_1)
            if self.cfg.use_bundle:
                pose3d_homo = bundle_adjustment(pose3d_homo,
                                                person,
                                                self.dataset,
                                                pose_mat,
                                                sub_imgid2cam,
                                                logging=logger)
            pose3d = pose3d_homo[:3] / (pose3d_homo[3] + 10e-6)
            # pose3d -= ((pose3d[:, 11] + pose3d[:, 12]) / 2).reshape ( 3, -1 ) # No need to normalize to hip
            if check_bone_length(pose3d):
                multi_pose3d.append(pose3d)
            else:
                # logging.info ( f'A pose proposal deleted on {img_id}:{person}' )
                sub_imageid = list()
                pass
            chosen_img.append(sub_imageid)
        return multi_pose3d, chosen_img
Пример #2
0
    def _hybrid_kernel(self, matched_list, pose_mat, sub_imgid2cam, img_id):
        return pictorial.hybrid_kernel ( self, matched_list, pose_mat, sub_imgid2cam, img_id )
        multi_pose3d = list ()

        for person in matched_list:
            # use bottom-up approach to get the 3D pose of person
            if person.shape[0] <= 1:
                continue

            # step1: use the 2D joint of person to triangulate the 3D joints candidates

            # person's 17 3D joints candidates
            candidates = np.zeros ( (17, person.shape[0] * (person.shape[0] - 1) // 2, 3) )
            # 17xC^2_nx3
            cnt = 0
            for i in range ( person.shape[0] ):
                for j in range ( i + 1, person.shape[0] ):
                    cam_id_i, cam_id_j = sub_imgid2cam[person[i]], sub_imgid2cam[person[j]]
                    projmat_i, projmat_j = self.dataset.P[cam_id_i], self.dataset.P[cam_id_j]
                    pose2d_i, pose2d_j = pose_mat[person[i]].T, pose_mat[person[j]].T
                    pose3d_homo = cv2.triangulatePoints ( projmat_i, projmat_j, pose2d_i, pose2d_j )
                    pose3d_ij = pose3d_homo[:3] / pose3d_homo[3]
                    candidates[:, cnt] += pose3d_ij.T
                    cnt += 1

            unary = self.dataset.get_unary ( person, sub_imgid2cam, candidates, img_id )

            # step2: use the max-product algorithm to inference to get the 3d joint of the person

            # change the coco order
            coco_2_skel = [0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
            candidates = np.array ( candidates )[coco_2_skel]
            unary = unary[coco_2_skel]
            skel = pictorial.getskel ()
            # construct pictorial model
            edges = pictorial.getPictoStruct ( skel, self.dataset.distribution )
            xp = pictorial.inferPict3D_MaxProd ( unary, edges, candidates )
            human = np.array ( [candidates[i][j] for i, j in zip ( range ( xp.shape[0] ), xp )] )
            human_coco = np.zeros ( (17, 3) )
            human_coco[[0, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]] = human
            human_coco[[1, 2, 3, 4]] = human_coco[0]  # Just make visualize beauty not real ear and eye
            human_coco = human_coco.T
            if self.cfg.reprojection_refine and len ( person ) > 2:
                for joint_idx in range ( human_coco.shape[1] ):
                    reprojected_error = np.zeros ( len ( person ) )
                    for idx, pid in enumerate ( person ):
                        human_coco_homo = np.ones ( 4 )
                        human_coco_homo[:3] = human_coco[:, joint_idx]
                        projected_pose_homo = self.dataset.P[sub_imgid2cam[pid]] @ human_coco_homo
                        projected_pose = projected_pose_homo[:2] / projected_pose_homo[2]
                        reprojected_error[idx] += np.linalg.norm ( projected_pose - pose_mat[pid, joint_idx] )
                    # import IPython; IPython.embed()
                    # pose_select = reprojected_error < self.cfg.refine_threshold
                    pose_select = (
                                          reprojected_error - reprojected_error.mean ()) / reprojected_error.std () < self.cfg.refine_threshold
                    if pose_select.sum () >= 2:
                        Ps = list ()
                        Ys = list ()
                        for idx, is_selected in enumerate ( pose_select ):
                            if is_selected:
                                Ps.append ( self.dataset.P[sub_imgid2cam[person[idx]]] )
                                Ys.append ( pose_mat[person[idx], joint_idx].reshape ( -1, 1 ) )
                        Ps = torch.tensor ( Ps, dtype=torch.float32 )
                        Ys = torch.tensor ( Ys, dtype=torch.float32 )
                        Xs = multiTriIter ( Ps, Ys )
                        refined_pose = (Xs[:3] / Xs[3]).numpy ()
                        human_coco[:, joint_idx] = refined_pose.reshape ( -1 )
            if True or check_bone_length ( human_coco ):
                multi_pose3d.append ( human_coco )
        return multi_pose3d