Пример #1
0
def analytical_smoothing_cost(traj, measurements, m_1_0, P_1_0,
                              motion_model: MotionModel,
                              meas_model: MeasModel):
    """Cost function for an optimisation problem used in the family of extended smoothers
    Efficient implementation which assumes that the motion and meas models have no explicit dependency on the time step.

    GN optimisation of this cost function will result in a linearised function
    corresponding to the Iterated Extended Kalman Smoother (IEKS).

    Args:
        traj: states for a time sequence 1, ..., K
            represented as a np.array(K, D_x).
            (The actual variable in the cost function)
        measurements: measurements for a time sequence 1, ..., K
            represented as a list of length K of np.array(D_y,)
    """
    K = len(measurements)
    prior_diff = traj[0, :] - m_1_0
    _cost = prior_diff.T @ np.linalg.inv(P_1_0) @ prior_diff

    motion_diff = traj[1:, :] - motion_model.map_set(traj[:-1, :], None)
    meas_diff = measurements - meas_model.map_set(traj, None)
    for k in range(0, K - 1):
        _cost += motion_diff[k, :].T @ np.linalg.inv(
            motion_model.proc_noise(k)) @ motion_diff[k, :]
        # measurements are zero indexed, i.e. k-1 --> y_k
        if any(np.isnan(meas_diff[k, :])):
            continue
        _cost += meas_diff[k, :].T @ np.linalg.inv(
            meas_model.meas_noise(k)) @ meas_diff[k, :]
    _cost += meas_diff[-1, :].T @ np.linalg.inv(
        meas_model.meas_noise(K)) @ meas_diff[-1, :]

    return _cost
Пример #2
0
def gen_measurements(states: np.ndarray, standard_normal_noise: np.ndarray,
                     meas_model: MeasModel):
    num_time_steps = states.shape[0]
    standard_normal_noise = standard_normal_noise.reshape((num_time_steps, 1))
    time_step = None
    std = meas_model.meas_noise(time_step)
    noise = std * standard_normal_noise
    return meas_model.map_set(states, time_step) + noise
Пример #3
0
def grad_analytical_smoothing_cost(x_0, measurements, m_1_0, P_1_0,
                                   motion_model: MotionModel,
                                   meas_model: MeasModel):
    """Gradient of the cost function f in `analytical_smoothing_cost`
    Here, the full trajectory x_1:K is interpreted as one vector (x_1^T, ..., x_K)^T with K d_x elements.

    Args:
        x_0: current iterate
            represented as a np.array(K, D_x).
        measurements: measurements for a time sequence 1, ..., K
            represented as a list of length K of np.array(D_y,)
    """
    K = len(measurements)
    D_x = m_1_0.shape[0]
    grad_pred = np.zeros((K * D_x, ))
    grad_update = np.zeros(grad_pred.shape)

    prior_diff = x_0[0, :] - m_1_0
    motion_diff = x_0[1:, :] - motion_model.map_set(x_0[:-1, :], None)

    grad_pred[0:D_x] = np.linalg.inv(P_1_0) @ prior_diff
    F_1 = motion_model.jacobian(x_0[0, :], 1)
    grad_update[0:D_x] = F_1.T @ np.linalg.inv(
        motion_model.proc_noise(1)) @ motion_diff[0, :]

    for k_ind in range(1, K - 1):
        k = k_ind + 1
        grad_pred[k_ind * D_x:(k_ind + 1) * D_x] = (np.linalg.inv(
            motion_model.proc_noise(k - 1)) @ motion_diff[k_ind - 1, :])
        F_k = motion_model.jacobian(x_0[k_ind, :], k)
        grad_update[k_ind * D_x:(k_ind + 1) * D_x] = (F_k.T @ np.linalg.inv(
            motion_model.proc_noise(k)) @ motion_diff[k_ind, :])

    grad_update[0:D_x] = np.linalg.inv(
        motion_model.proc_noise(K - 1)) @ motion_diff[-1, :]

    meas_diff = measurements - meas_model.map_set(x_0, None)
    grad_meas = np.zeros(grad_pred.shape)
    for k_ind in range(0, K):
        k = k_ind + 1
        if any(np.isnan(meas_diff[k_ind, :])):
            continue
        H_k = meas_model.jacobian(x_0[k_ind, :], k)
        R_k_inv = np.linalg.inv(meas_model.meas_noise(k))
        grad_meas[k_ind * D_x:(k_ind + 1) *
                  D_x] = H_k.T @ R_k_inv @ meas_diff[k_ind, :]

    return grad_pred - grad_meas  # - grad_update
Пример #4
0
def simulate_data(
    num_steps: int,
    prior_mean: float,
    prior_cov: float,
    motion_model: NonStationaryGrowth,
    meas_model: MeasModel,
) -> Tuple[np.ndarray, np.ndarray]:
    chol_ini = np.sqrt(prior_cov)
    chol_Q = np.sqrt(motion_model.proc_noise(None))

    states = np.empty((num_steps, 1))
    xk = prior_mean + chol_ini * np.random.randn()
    for k in range(1, num_steps):
        xk_pred = motion_model.mapping(xk, k) + chol_Q * np.random.randn()
        states[k] = xk_pred
        xk = xk_pred

    chol_R = np.sqrt(meas_model.meas_noise(None))
    meas_noise = chol_R * np.random.randn(num_steps, 1)
    meas = meas_model.map_set(states) + meas_noise
    return states, meas
Пример #5
0
def dir_der_analytical_smoothing_cost(x_0, p, measurements, m_1_0, P_1_0,
                                      motion_model: MotionModel,
                                      meas_model: MeasModel):
    """Directional derivative of the cost function f in `analytical_smoothing_cost`

    Here, the full trajectory x_1:K is interpreted as one vector (x_1^T, ..., x_K)^T with K d_x elements.

    Args:
        x_0: current iterate
            represented as a np.array(K, D_x).
        p: search direction, here: x_1 - x_0, i.e. new smoothing estimated means minus current iterate.
            represented as a np.array(K, D_x).
        measurements: measurements for a time sequence 1, ..., K
            represented as a list of length K of np.array(D_y,)
    """
    K = len(measurements)

    prior_diff = x_0[0, :] - m_1_0
    motion_diff = x_0[1:, :] - motion_model.map_set(x_0[:-1, :], None)
    meas_diff = measurements - meas_model.map_set(x_0, None)

    der = p[0, :] @ np.linalg.inv(P_1_0) @ prior_diff
    H_1 = meas_model.jacobian(x_0[0, :], 1)
    R_1_inv = np.linalg.inv(meas_model.meas_noise(1))
    der -= p[0, :] @ H_1.T @ R_1_inv @ meas_diff[0, :]

    for k_ind in range(1, K):
        k = k_ind + 1
        F_k_min_1 = motion_model.jacobian(x_0[k_ind - 1, :], k - 1)
        factor_1 = p[k_ind, :].T - F_k_min_1 @ p[k_ind - 1, :].T
        der += factor_1 @ np.linalg.inv(
            motion_model.proc_noise(k - 1)) @ motion_diff[k_ind - 1, :]
        if any(np.isnan(meas_diff[k_ind, :])):
            continue
        H_k = meas_model.jacobian(x_0[k_ind, :], k)
        R_k_inv = np.linalg.inv(meas_model.meas_noise(k))
        der -= p[k_ind, :] @ H_k.T @ R_k_inv @ meas_diff[k_ind, :]

    return der
Пример #6
0
def analytical_smoothing_cost_lm_ext(traj, measurements, prev_means, m_1_0,
                                     P_1_0, motion_model: MotionModel,
                                     meas_model: MeasModel, lambda_):
    """Cost function for an optimisation problem used in the family of extended smoothers
    with LM regularisation

    GN optimisation of this cost function will result in a linearised function
    corresponding to the Levenberg-Marquardt Iterated Extended Kalman Smoother (IEKS)

    Args:
        traj: states for a time sequence 1, ..., K
            represented as a np.array(K, D_x).
            (The actual variable in the cost function)
        measurements: measurements for a time sequence 1, ..., K
            represented as a list of length K of np.array(D_y,)
    """
    prior_diff = traj[0, :] - m_1_0
    _cost = prior_diff.T @ np.linalg.inv(P_1_0) @ prior_diff

    motion_diff = traj[1:, :] - motion_model.map_set(traj[:-1, :], None)
    meas_diff = measurements - meas_model.map_set(traj, None)
    for k in range(0, traj.shape[0] - 1):
        _cost += motion_diff[k, :].T @ np.linalg.inv(
            motion_model.proc_noise(k)) @ motion_diff[k, :]
        # measurements are zero indexed, i.e. k-1 --> y_k
        if any(np.isnan(meas_diff[k, :])):
            continue
        _cost += meas_diff[k, :].T @ np.linalg.inv(
            meas_model.meas_noise(k)) @ meas_diff[k, :]
    _cost += meas_diff[-1, :].T @ np.linalg.inv(
        meas_model.meas_noise(measurements.shape[0])) @ meas_diff[-1, :]

    lm_dist = _lm_ext(traj, prev_means, lambda_)
    _cost += lm_dist

    return _cost