def __init__(self, args): super(DialogueClassifierNetwork, self).__init__() self.args = args self.dialogue_embedder = DialogueEmbedder(args) ## Define class networkict_ dict_ = { "input_size": args.output_input_size, "hidden_size": args.output_hidden_size, "output_size": 1, "num_layers": args.output_num_layers[0], } self.current_dl_trasnformer1 = model_factory.get_model_by_name( args.output_layer[0], args, kwargs=dict_) self.current_dl_trasnformer2 = model_factory.get_model_by_name( args.output_layer[0], args, kwargs=dict_) dict_ = { "input_size": args.output_input_size, "hidden_size": args.output_hidden_size, "output_size": 1, "num_layers": args.output_num_layers[0], } self.next_dl_trasnformer = model_factory.get_model_by_name( args.output_layer[0], args, kwargs=dict_) self.prev_dl_trasnformer = model_factory.get_model_by_name( args.output_layer[0], args, kwargs=dict_)
def __init__(self, args): super(DialogueBowNetwork, self).__init__() self.dialogue_embedder = DialogueEmbedder(args) self.args = args ## Define class network dict_ = {"input_size": args.output_input_size, "hidden_size": args.output_hidden_size[0], "num_layers" : args.output_num_layers[0], "output_size": args.output_size} self.next_bow_scorer = model_factory.get_model_by_name(args.output_layer[0], args, kwargs = dict_) self.prev_bow_scorer = model_factory.get_model_by_name(args.output_layer[0], args, kwargs = dict_)
def __init__(self, args, **kwargs): super(DialogueEmbedder, self).__init__() self.args = args if not args.fixed_token_encoder: self.token_encoder = model_factory.get_model_by_name( args.token_encoder, args) if not args.fixed_utterance_encoder: self.utterance_encoder = model_factory.get_model_by_name( args.utterance_encoder, args) conversation_dict = { "input_size": args.embed_size, "hidden_size": args.hidden_size, "num_layers": args.num_layers } self.conversation_encoder = model_factory.get_model_by_name( args.conversation_encoder, args, kwargs=conversation_dict)
def __init__(self, args): ## Initialize environment self.args = args self.updates = 0 ## If token encodings are not computed on the fly using character CNN based models but are obtained from a pretrained model if args.fixed_token_encoder: self.token_encoder = model_factory.get_embeddings(args.token_encoder, args) self.network = model_factory.get_model_by_name(args.network, args)
def __init__(self, args): super(DialogueActClassifierNetwork, self).__init__() self.dialogue_embedder = DialogueEmbedder(args) ## Define class network ## output labels size dict_ = { "input_size": args.output_input_size, "hidden_size": args.output_hidden_size[0], "num_layers": args.output_num_layers[0], "output_size": args.output_size } self.classifier = model_factory.get_model_by_name(args.output_layer[0], args, kwargs=dict_)