def make_model(opt, n_vocab, n_ctx, state_dict): model = models.make_model(opt, n_vocab, n_ctx, return_acts=True, return_probs=False) models.load_state_dict(model, state_dict) model.eval() return model
def main(num): # Generate configuration files depending on experiment being run utils.generate_config_files("atomic", num) # Loads the correct configuration file config_file = "config/atomic/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Where to find the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") categories = opt.data.categories path = "data/atomic/processed/{}/{}.pickle".format( opt.exp, utils.make_name_string(opt.data)) data_loader = data.make_data_loader(opt, categories) loaded = data_loader.load_data(path) print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") # Initialize text_encoder text_encoder = TextEncoder(config.encoder_path, config.bpe_path) special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] special += [data.blank_token] text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder opt.data.maxe1 = data_loader.max_event opt.data.maxe2 = data_loader.max_effect opt.data.maxr = data.atomic_data.num_delimiter_tokens["category"] n_special = len(special) n_ctx = opt.data.maxe1 + opt.data.maxe2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train") # Get number of examples data.set_max_sizes(data_loader) if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: model = models.multi_gpu(model, config.gpu_indices).cuda() else: model.cuda(cfg.device) print("Done.") print("Training") optimizer = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) scorers = ["bleu", "rouge", "cider"] trainer = train.make_trainer(opt, meta, data_loader, model, optimizer) trainer.set_evaluator(opt, model, data_loader) trainer.run()
opt.data.maxe1 = data_loader.max_event opt.data.maxe2 = data_loader.max_effect opt.data.maxr = data.atomic_data.num_delimiter_tokens["category"] n_special = len(special) n_ctx = opt.data.maxe1 + opt.data.maxe2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Building Model") print(opt.exp) print(n_vocab) model = models.make_model(opt, n_vocab, n_ctx, 0, load=False, return_acts=True, return_probs=False)
# Prune data from data loader depending on the evaluation set if not all([i in opt.eval.categories for i in opt.data.categories]): print("Pruning Data") print("Original number of evaluation sequences: {}".format( len(data_loader.sequences[split]["total"]))) adata.prune_data_for_evaluation( data_loader, ["<{}>".format(cat) for cat in opt.eval.categories], split) print("Pruned number of evaluation sequences for subset: {}".format( len(data_loader.sequences[split]["total"]))) print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=False) print("Loading Weights") models.load_state_dict(model, model_file["state_dict"]) print("Done Loading Weights") model.eval() # Initialize variable for # of examples to cycle through data.set_max_sizes(data_loader, force_split=split) evaluator = evaluate.make_evaluator(opt, model, data_loader) evaluator.batch_variables["split"] = split model.cuda(cfg.device)
def main(num): # Generate configuration files depending on experiment being run utils.generate_config_files("conceptnet", num) # Loads the correct configuration file config_file = "config/conceptnet/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # config.gpu_mode = torch.cuda.is_available() # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Load the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") # Initialize path to pre-set data loader path = "data/conceptnet/processed/{}/{}.pickle".format( opt.exp, utils.make_name_string(opt.data)) # Make data loader data_loader = data.make_data_loader(opt) loaded = data_loader.load_data(path) print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") text_encoder = TextEncoder(config.encoder_path, config.bpe_path) categories = data.conceptnet_data.conceptnet_relations special = [data.start_token, data.end_token] special += ["<{}>".format(cat) for cat in categories] if loaded: text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder else: for special_token in special: text_encoder.decoder[len(encoder)] = special_token text_encoder.encoder[special_token] = len(encoder) data_loader.make_tensors(text_encoder, special) # Set max size of different parts of relation context_size_e1 = data_loader.max_e1 context_size_e2 = data_loader.max_e2 context_size_r = data_loader.max_r opt.data.maxr = context_size_r n_special = len(special) n_ctx = context_size_e1 + context_size_r + context_size_e2 n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab # Build Model print("Building Model") model = models.make_model(opt, n_vocab, n_ctx, n_special, load=(opt.net.init == "pt")) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train", keys=["total"]) data.set_max_sizes(data_loader) # Push to GPU if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: model = models.multi_gpu(model, config.gpu_indices).cuda() else: model.cuda(cfg.device) print("Done.") print("Training") optimizer = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) trainer = train.make_trainer(opt, meta, data_loader, model, optimizer) print(data_loader.sequences["dev"]["total"].max()) trainer.set_generator(opt, model, data_loader) trainer.set_evaluator(opt, model, data_loader) trainer.run()
context_size_e1 = data_loader.max_e1 context_size_e2 = data_loader.max_e2 context_size_r = data_loader.max_r n_special = len(special) n_ctx = context_size_e1 + context_size_e2 + context_size_r n_vocab = len(text_encoder.encoder) + n_ctx print(data_loader.__dict__.keys()) opt.net.vSize = n_vocab print("Building Model") print(opt.exp) model = models.make_model( opt, n_vocab, n_ctx, 0, load=False, return_acts=True, return_probs=False) model.load_state_dict(model_stuff["state_dict"]) if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) model.cuda(cfg.device) print("Done.") model.eval() device = cfg.device model.to(device)
def main(num): # Generate configuration files depending on experiment being run #utils.generate_config_files("conceptnet", num) # Loads the correct configuration file config_file = "config/conceptnet/config_{}.json".format(num) print(config_file) # Read config file to option config = cfg.read_config(cfg.load_config(config_file)) opt, meta = cfg.get_parameters(config) # config.gpu_mode = torch.cuda.is_available() # Set the random seeds torch.manual_seed(opt.train.static.seed) random.seed(opt.train.static.seed) if config.gpu_mode: torch.cuda.manual_seed_all(opt.train.static.seed) # Load the data splits = ["train", "dev", "test"] opt.train.dynamic.epoch = 0 print("Loading Data") # Initialize path to pre-set data loader x = "data/conceptnet/processed/generation/rel_language-trainsize_100-devversion_12-maxe1_200-maxe2_200.pickle" path = x.format(opt.exp, utils.make_name_string(opt.data)) print(path) # Make data loader data_loader = data.make_data_loader(opt) loaded = data_loader.load_data(path) #print(data_loader.sequences["train"]["total"].size(0)) data_loader.opt = opt data_loader.batch_size = opt.train.dynamic.bs print("Done.") print(data_loader) #text_encoder = TextEncoder(config.encoder_path, config.bpe_path) text_encoder = GPT2Tokenizer.from_pretrained('gpt2') special_tokens = { "cls_token": "[CLS]", "unk_token": "[UNK]" } #, "mask": '["MASK"]',"separator": '["SEP"]', "start_of_sentence": '["SOS"]', "end_of_sentence": '["EOS"]'} text_encoder = GPT2Tokenizer.from_pretrained("gpt2", cls_token="[CLS]", unk_token="[UNK]", mask='["MASK"]', separator='["SEP"]', start_of_sentence='["SOS"]', end_of_sentence='["EOS"]') text_encoder.add_special_tokens(special_tokens) #categories = data.conceptnet_data.conceptnet_relations special = [data.start_token, data.end_token] #special += ["<{}>".format(cat) for cat in categories] if loaded: text_encoder.encoder = data_loader.vocab_encoder text_encoder.decoder = data_loader.vocab_decoder else: for special_token in special: text_encoder.decoder[len(encoder)] = special_token text_encoder.encoder[special_token] = len(encoder) data_loader.make_tensors(text_encoder, special) # Set max size of different parts of relation context_size_i1 = data_loader.max_input1 context_size_i2 = data_loader.max_input2 context_size_i3 = data_loader.max_input3 context_size_i4 = data_loader.max_input4 context_size_o1 = data_loader.max_output1 context_size_o2 = data_loader.max_output2 context_size_o3 = data_loader.max_output3 context_size_o4 = data_loader.max_output4 #opt.data.maxr = context_size_r n_special = len(special) n_ctx = context_size_i1 + context_size_i2 + context_size_i3 + context_size_i4 + context_size_o1 + context_size_o2 + context_size_o3 + context_size_o4 n_vocab = len(text_encoder.encoder) + n_ctx opt.net.vSize = n_vocab # Build Model print("Building Model") print(opt.net.init == "pt") model = models.make_model(opt, n_vocab, n_ctx, n_special) model.resize_token_embeddings(len(text_encoder)) model_knowledge = model_knowledge_story.make_model(opt, n_vocab, n_ctx, n_special) model_knowledge.resize_token_embeddings(len(text_encoder)) print("Done.") print("Files will be logged at: {}".format( utils.make_name(opt, prefix="results/losses/", is_dir=True, eval_=True))) data_loader.reset_offsets("train", keys=["total"]) data.set_max_sizes(data_loader) # Push to GPU if config.gpu_mode: print("Pushing to GPU: {}".format(config.gpu_index)) cfg.device = config.gpu_index cfg.do_gpu = True torch.cuda.set_device(cfg.device) if config.multigpu: #print("!!! I am here !!!") model = models.multi_gpu(model, config.gpu_indices).cuda() #model.to(f'cuda:{model.device_ids[0]}') model_knowledge = model_knowledge_story.multi_gpu( model_knowledge, config.gpu_indices).cuda() #model_knowledge.to(f'cuda:{model.device_ids[1]}') else: model.cuda(cfg.device) model_knowledge.cuda(cfg.device) print("Done.") print("Training") optimizer_m = OpenAIAdam(model.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) optimizer_k = Knowledge_Adam(model_knowledge.parameters(), lr=opt.train.dynamic.lr, schedule=opt.train.static.lrsched, warmup=opt.train.static.lrwarm, t_total=meta.iterations, b1=opt.train.static.b1, b2=opt.train.static.b2, e=opt.train.static.e, l2=opt.train.static.l2, vector_l2=opt.train.static.vl2, max_grad_norm=opt.train.static.clip) trainer = train.make_trainer(opt, meta, data_loader, model, model_knowledge, optimizer_m, optimizer_k) trainer.set_generator(opt, model, model_knowledge, data_loader) trainer.set_evaluator(opt, model, model_knowledge, data_loader) trainer.run()
# Get component segmentation of sequences # context_size_event = maximum size of an event description # context_size_effect = maximum size of an event effect/intent/etc. context_size_event = data_loader.max_event context_size_effect = data_loader.max_effect n_special = len(special_tokens) n_ctx = context_size_event + context_size_effect n_vocab = len(text_encoder.encoder) + n_ctx config.net.vSize = n_vocab print("Building Model") model = models.make_model(config, n_vocab, n_ctx, n_special, load=False) print("Loading Weights") model_file = torch.load(args.model_name, map_location=torch.device("cpu")) model.load_state_dict(model_file['state_dict']) print("Done Loading Weights") model.eval() # Initialize variable for # of examples to cycle through data.set_max_sizes(data_loader, force_split=split) evaluator = evaluate.make_evaluator(config, model, data_loader) evaluator.batch_variables["split"] = split # model.cuda(cfg.device)