def load_train_data(self): train_data = model_utils.load_train_data(self.path_dataset) test_bgs_data = model_utils.load_test_bgs_data(self.path_dataset) factor = -1 * np.log(0.01) norm_train_data = model_utils.normalize(train_data, factor) norm_test_bgs_data = model_utils.normalize(test_bgs_data, factor) return norm_train_data, norm_test_bgs_data
def load_train_data(self): train_data = model_utils.load_train_data(self.path_dataset) test_bgs_data = model_utils.load_test_bgs_data(self.path_dataset) train_shape = (self.dataset_config['TRAIN_SIZE'], self.shape) test_bgs_shape = (self.dataset_config['TEST_BACKGROUND_SIZE'], self.shape) factor = -1 * np.log(0.01) norm_train_data = model_utils.normalize(train_data.reshape(train_shape), factor) norm_test_bgs_data = model_utils.normalize(test_bgs_data.reshape(test_bgs_shape), factor) return norm_train_data, norm_test_bgs_data