def setupData(self): productionStartDate = Date(month=7,day=25,year=2013) lastLoadDate = Date(month=10,day=14,year=2013) loadDate = productionStartDate if not Location.objects.filter(name='Benchmark').exists(): location = Location() location.name = 'Benchmark' location.pricingDate = date(month=10,day=14,year=2013) location.save() location = Location.objects.get(name='Benchmark') if not User.objects.filter(username='******').exists(): user = User.objects.create_user(username='******',email='*****@*****.**',\ password='******') user.is_staff = True user.is_superuser = True user.save() user1 = User.objects.get(username='******') if not UserProfile.objects.filter(user=user1).exists(): up1 = UserProfile() up1.user = user1 up1.location = location up1.marketId = 'EOD' up1.save() equities = Equity.objects.all() for equity in equities: # print equity if not Portfolio.objects.filter(name=equity.ticker, user='******').exists(): portfolio =Portfolio() portfolio.name = equity.ticker portfolio.user = '******' portfolio.save() portfolio = Portfolio.objects.get(name=equity.ticker, user='******') timeSteps = VARUtilities.VARTimePeriodsAndSteps() timeSteps.generate(start=productionStartDate, end=lastLoadDate, num=1, term=Enum.TimePeriod('D'), calendar=Calendar.Target()) for loadDate in timeSteps.timeSteps: if not ModelPosition.objects.filter(asOf=loadDate, portfolio=portfolio, positionType = Enum.PositionType('EQUITY'), ticker = equity.ticker, amount = 100.0).exists(): position = ModelPosition() position.asOf=loadDate position.portfolio = portfolio position.positionType = Enum.PositionType('EQUITY') position.ticker = equity.ticker position.amount = 100.0 position.save()
def load_locations_from_environ(): location_mapping = {} for env_key, value in environ.items(): if 'COLLECTION_MAP_ID' in env_key: map_file_id = environ.get(env_key.replace('MAP_ID', 'FILE_ID')) location_mapping[value] = Location.load_locations_from_collection( value, file_id=map_file_id) return location_mapping
def google_mapping_to_csv(map_id): locations = Location.load_locations_from_collection(map_id) rows = [Location.SUPPORTED_ATTRIBUTES] for location in locations: rows.append(location.to_row()) with open(f'{map_id}.csv', 'w') as outfile: writer = csv.writer(outfile) writer.writerows(rows)
def get_closest_locations(map_id: str, locations: List, data: Dict): """ Gets closest locations for a query :param map_id: ID for the map to lookup relevant locations :param locations: array of Location for this map_id :param data: injected request body that contains needed query info :return: {zoom_level: int, closest_location: Location, locations: [Location]} """ query_location = Location(**data) location_limit = min([data.get('limit', 20), 20]) sig_figs = max([data.get('sig_figs', 2), 0]) distances = [] for location in locations: distances.append( (query_location.distance(location), location.to_dict())) sorted_distances = sorted(distances, key=lambda d: d[0]) # Adding distance to locations index_counter = 0 for sd in sorted_distances: distance = sd[0] location = sd[1] location['distance'] = round(distance, sig_figs) location['index'] = index_counter index_counter += 1 closest_location = sorted_distances[0] zoom_level = Location.best_zoom_level(closest_location[0]) other_locations = [cl[1] for cl in sorted_distances[:location_limit]] response = { 'zoom_level': zoom_level, 'query': data, 'closest_location': closest_location[1], 'locations': other_locations } return jsonify(response)
def get_locations(transactions: list) -> list: """ Extract a list of unique locations from the transactions list. Each location is assigned a UUID string Returns ------- list A list containing the unique locations as dictionaries """ locations = [ Location(id=str(get_uuid()), name=location) for location in set(transaction["location"] for transaction in transactions) ] return locations
def transform_google_rows(rows): locations = [] for row in rows: locations.append(Location(**{ 'id': row[0], 'name': row[1], 'street': row[2], 'city': row[3], 'state': row[4], 'zipcode': row[5], 'formatted_address': row[6], 'phone': row[7], 'lat': float(row[8]), 'lng': float(row[9]), 'url': row[10] })) return locations
def run_geocodes(candidates): locations = [] for candidate in candidates: name = candidate[0] street = candidate[1] city = candidate[2] state = candidate[3] lat = 0 if not candidate[4] else float(candidate[4]) lng = 0 if not candidate[5] else float(candidate[5]) print(f'Getting geocoding for {name}') results = google_location_search(name, city, state) if len(results) == 0: print(f'WARNING:: Could not find match for {name} in {city}, {state}') continue elif len(results) == 1: result = results[0] else: result = pick_best_result(results, name, street, city, state, lat, lng) location = Location.build_from_google_id(result['place_id']) locations.append(location) return locations
def location_save(): post = json.loads(request.data) with database.connection_context(): location = Location.create(**post) return {"success": True, "id": location.id}
import psycopg2 from src.db import * from src.models import Complaint, Location, Incident conn = psycopg2.connect(database = 'nypd_complaints', user = '******', password = '******') cursor = conn.cursor() drop_records(cursor, conn, 'complaints') drop_records(cursor, conn, 'locations') drop_records(cursor, conn, 'incidents') complaint_one = Complaint(id = '1', desc_offense = 'GRAND LARCENY OF MOTOR VEHICLE', level_offense = 'GRAND LARCENY', dept_juris = 'N.Y. POLICE DEPT') complaint_two = Complaint(id = '2', desc_offense = 'MURDER & NON-NEGL. MANSLAUGHTER', level_offense = 'FELONY', dept_juris = 'N.Y. HOUSING POLICE') save(complaint_one, conn, cursor) save(complaint_two, conn, cursor) location_one = Location(id = '123', latitude = -73.91575750399994, longitude = -74.00629428799994, borough = 'MANHATTAN', precinct = 6, setting = 'STREET') location_two = Location(id = '456', latitude = 40.69866511400005, longitude = -73.91575750399994, borough = '', precinct = 18, setting = '') save(location_one, conn, cursor) save(location_two, conn, cursor) incident_one = Incident(id = '900', incident_num = 453437883, complaint_id = '1', incident_date = '09/16/2020', incident_time = '21:20:00', location_id = '123') incident_two = Incident(id = '800', incident_num = 774568604, complaint_id = '2', incident_date = '09/02/2020', incident_time = '12:30:00', location_id = '456') save(incident_one, conn, cursor) save(incident_two, conn, cursor)
def test_get_locations(mock_get_uuid): actual = get_locations(sample_raw_transaction) assert mock_get_uuid.called_once() assert actual == [Location(id=sample_uuid, name="Isle of Wight")]
def dataForProductionStart(self): #Setup initial data for Tim's portfolios as of 7/24/13 productionStartDate = Date(month=7,day=25,year=2013) if not Batch.objects.filter(batchDate=productionStartDate): batch = Batch() batch.batchDate = productionStartDate batch.save() if not Location.objects.filter(name='Manhasset').exists(): location = Location() location.name = 'Manhasset' location.pricingDate = date(month=7,day=25,year=2013) location.save() if not User.objects.filter(username='******').exists(): #Enter email password User.objects.create_user(username='******',email='*****@*****.**',\ password='******') cmt = User.objects.get(username='******') if not UserProfile.objects.filter(user=cmt).exists(): up2 = UserProfile() up2.user = cmt up2.location = Location.objects.get(name='Manhasset') up2.marketId = 'EOD' up2.save() #if it exists then make sure Location is Manhasset else: profile = UserProfile.objects.get(user=cmt) profile.location = Location.objects.get(name='Manhasset') profile.marketId = 'EOD' profile.save() #Setup portfolios portfolioData = (['401K','cmt'],['ChaseIRA','cmt'], ['TDIRA','cmt'],['TDPostTaxIRA','cmt'], ['Just2Trade','cmt'],['TDEmergency','cmt']) for p in portfolioData: if not Portfolio.objects.filter(name=p[0],user=p[1]): portfolio =Portfolio() portfolio.name = p[0] portfolio.user = p[1] portfolio.save() #Setup Equities and Prices as of productionStartDate dataSet = (('NEIAX',32.57),('PTTDX',10.78),('EFA',61.06), ('GSG',32.67),('SAN-E',26.7301),('VWO',40.19), ('VNQ', 71.17)) for data in dataSet: if not Equity.objects.filter(ticker=data[0]).exists(): equity = Equity() equity.ticker = data[0] equity.assetType = Enum.AssetType('EQUITYUS') equity.save() equity = Equity.objects.get(ticker=data[0]) stockPrice = StockPrice() stockPrice.equity = equity stockPrice.pricingDate = productionStartDate stockPrice.marketId = 'EOD' stockPrice.mid = data[1] stockPrice.save() #Setup Bond identifiers and TCBonds as of productionStartDate dataSet = (('PortAuth_4.00_JAN42','73358WGG3',Date(month=1,day=15,year=2012),Date(month=1,day=15,year=2042),0.04,),) for data in dataSet: if not Identifier.objects.filter(name=data[1],type=BondIdentifierType('CUSIP')): identifier = Identifier() identifier.name = data[1] identifier.type = BondIdentifierType('CUSIP') identifier.save() for data in dataSet: if not TCBond.objects.filter(name=data[0]): tcBond = TCBond() tcBond.name = data[0] tcBond.identifiers = Identifier.objects.get(name=data[1],type=BondIdentifierType('CUSIP')) tcBond.startDate = data[2].toPythonDate() tcBond.endDate = data[3].toPythonDate() tcBond.coupon = data[4] tcBond.assetType = Enum.AssetType('NYMUNIBOND') tcBond.save() #Setup OAS for production start date if not BondOAS.objects.filter(tCBond=TCBond.objects.get(name='PortAuth_4.00_JAN42'), marketId='EOD',pricingDate=productionStartDate): bondOAS = BondOAS(tCBond=TCBond.objects.get(name='PortAuth_4.00_JAN42'), marketId='EOD',pricingDate=productionStartDate,mid=0.014) bondOAS.save() #Setup Rates fredLoader = FREDLoader.FREDLoader() fredLoader.loadLiborCurvesForSpecificDates(marketId='EOD', datesToLoadFor=[productionStartDate]) #Setup transactions dataSet = (('401K','INIT','EQUITY','NEIAX',8758.407), ('401K','INIT','EQUITY','PTTDX',10746.441), ('ChaseIRA','INIT','EQUITY','EFA',633.37038), ('TDIRA','INIT','EQUITY','EFA',47), ('TDIRA','INIT','EQUITY','GSG',610), ('TDIRA','INIT','EQUITY','VWO',1050), ('TDIRA','INIT','CASH','Cash',11151.23), ('TDPostTaxIRA','INIT','EQUITY','EFA',560), ('TDPostTaxIRA','INIT','EQUITY','VNQ',170), ('TDPostTaxIRA','INIT','CASH','Cash',951.33), ('Just2Trade','INIT','EQUITY','GSG',300), ('Just2Trade','INIT','EQUITY','VWO',430), ('TDEmergency','INIT','BOND','PortAuth_4.00_JAN42',100), ('TDEmergency','INIT','CASH','Cash',201.01)) for data in dataSet: if not Transaction.objects.filter(portfolio=Portfolio.objects.get(name=data[0]), transactionType=TransactionType(data[1]), positionType=PositionType(data[2]), ticker=data[3], amount=data[4], transactionDate = productionStartDate, effectiveDate = productionStartDate): transaction = Transaction() transaction.portfolio =Portfolio.objects.get(name=data[0]) transaction.transactionType = TransactionType(data[1]) transaction.positionType = PositionType(data[2]) transaction.ticker = data[3] transaction.amount = data[4] transaction.transactionDate = productionStartDate transaction.effectiveDate = productionStartDate transaction.reflectedInPosition = False transaction.save()
def dataForSuccessfulTest(self): ''' This saves all data so that system tests run successfully Pricing date is 9/12/2011 with market data id TEST1 ''' testDatePython = date(month=9,day=12,year=2011) testDate = Date(month=9,day=12,year=2011) testFirstDate = Date(month=8,day=30,year=2011) if not Location.objects.filter(name='Test1').exists(): location = Location() location.name = 'Test1' location.pricingDate = date(month=9,day=12,year=2011) location.save() location = Location.objects.get(name='Test1') if not User.objects.filter(username='******').exists(): user = User.objects.create_user(username='******',email='*****@*****.**',\ password='******') user.is_staff = True user.is_superuser = True user.save() if not User.objects.filter(username='******').exists(): User.objects.create_user(username='******',email='*****@*****.**',\ password='******') if not User.objects.filter(username='******').exists(): User.objects.create_user(username='******',email='*****@*****.**',\ password='******') if not User.objects.filter(username='******').exists(): User.objects.create_user(username='******',email='*****@*****.**',\ password='******') user1 = User.objects.get(username='******') if not UserProfile.objects.filter(user=user1).exists(): up1 = UserProfile() up1.user = user1 up1.location = location up1.marketId = 'EOD' up1.save() user2 = User.objects.get(username='******') if not UserProfile.objects.filter(user=user2).exists(): up2 = UserProfile() up2.user = user2 up2.location = location up2.marketId = 'EOD' up2.save() user3 = User.objects.get(username='******') if not UserProfile.objects.filter(user=user3).exists(): up3 = UserProfile() up3.user = user3 up3.location = location up3.marketId = 'TEST1' up3.save() user4 = User.objects.get(username='******') if not UserProfile.objects.filter(user=user4).exists(): up4 = UserProfile() up4.user = user4 up4.location = location up4.marketId = 'DEMO' up4.save() if not TCBond.objects.filter(name='TEST1').exists(): bond = TCBond() bond.name = 'TEST1' bond.ccy = 'USD' cusip = Enum.BondIdentifierType('CUSIP') if not Identifier.objects.filter(name='123456789', type=cusip): identifier = Identifier() identifier.name='123456789' identifier.type=cusip identifier.save() identifier = Identifier.objects.get(name='123456789', type=cusip) bond.identifiers = identifier bond.startDate = Date(month=9,day=12,year=2010).toPythonDate() bond.endDate = Date(month=9,day=12,year=2020).toPythonDate() bond.coupon = 0.01 bond.basis = '30360' bond.paymentFrequency = Enum.Frequency('S') bond.paymentRollRule = Enum.Roll('MF') bond.paymentCalendar = Calendar.createCalendar('US') bond.assetType = Enum.AssetType('NYMUNIBOND') bond.save() if not Equity.objects.filter(ticker='TEST1').exists(): equity = Equity() equity.ticker = 'TEST1' equity.assetType = Enum.AssetType('EQUITYUS') equity.save() equity = Equity.objects.get(ticker='TEST1') stockPrice = StockPrice() stockPrice.equity = equity stockPrice.pricingDate = testDate stockPrice.marketId = 'TEST1' stockPrice.mid = 123.45 stockPrice.save() equity = Equity.objects.get(ticker='TEST1') stockPrice = StockPrice() stockPrice.equity = equity stockPrice.pricingDate = testFirstDate stockPrice.marketId = 'TEST1' stockPrice.mid = 123.44 stockPrice.save() if not Equity.objects.filter(ticker='TEST2').exists(): equity = Equity() equity.ticker = 'TEST2' equity.assetType = Enum.AssetType('EQUITYUS') equity.save() equity = Equity.objects.get(ticker='TEST2') stockPrice = StockPrice() stockPrice.equity = equity stockPrice.pricingDate = testDate stockPrice.marketId = 'TEST1' stockPrice.mid = 543.21 stockPrice.save() equity = Equity.objects.get(ticker='TEST2') stockPrice = StockPrice() stockPrice.equity = equity stockPrice.pricingDate = testFirstDate stockPrice.marketId = 'TEST1' stockPrice.mid = 543.11 stockPrice.save() if not Portfolio.objects.filter(name='TEST1', user='******').exists(): portfolio =Portfolio() portfolio.name = 'TEST1' portfolio.user = '******' portfolio.save() portfolio =Portfolio.objects.get(name='TEST1', user='******') if not ModelPosition.objects.filter(asOf=testDate, portfolio=portfolio, positionType = Enum.PositionType('EQUITY'), ticker = 'TEST1', amount = 100.0).exists(): position = ModelPosition() position.asOf=testDate position.portfolio = portfolio position.positionType = Enum.PositionType('EQUITY') position.ticker = 'TEST1' position.amount = 100.0 position.save() if not ModelPosition.objects.filter(asOf=testDate, portfolio=portfolio, positionType = Enum.PositionType('EQUITY'), ticker = 'TEST2', amount = 100.0).exists(): position = ModelPosition() position.asOf=testDate position.portfolio = portfolio position.positionType = Enum.PositionType('EQUITY') position.ticker = 'TEST2' position.amount = 100.0 position.save() if not ModelPosition.objects.filter(asOf=testDate, portfolio=portfolio, positionType = Enum.PositionType('BOND'), ticker = 'TEST1', amount = 100.0).exists(): position = ModelPosition() position.asOf=testDate position.portfolio = portfolio position.positionType = Enum.PositionType('BOND') position.ticker = 'TEST1' position.amount = 100.0 position.save() if not ModelPosition.objects.filter(asOf=testFirstDate, portfolio=portfolio, positionType = Enum.PositionType('EQUITY'), ticker = 'TEST1', amount = 100.0).exists(): position = ModelPosition() position.asOf=testFirstDate position.portfolio = portfolio position.positionType = Enum.PositionType('EQUITY') position.ticker = 'TEST1' position.amount = 100.0 position.save() if not ModelPosition.objects.filter(asOf=testFirstDate, portfolio=portfolio, positionType = Enum.PositionType('EQUITY'), ticker = 'TEST2', amount = 100.0).exists(): position = ModelPosition() position.asOf=testFirstDate position.portfolio = portfolio position.positionType = Enum.PositionType('EQUITY') position.ticker = 'TEST2' position.amount = 100.0 position.save() if not ModelPosition.objects.filter(asOf=testFirstDate, portfolio=portfolio, positionType = Enum.PositionType('BOND'), ticker = 'TEST1', amount = 100.0).exists(): position = ModelPosition() position.asOf=testFirstDate position.portfolio = portfolio position.positionType = Enum.PositionType('BOND') position.ticker = 'TEST1' position.amount = 100.0 position.save() if not ModelPosition.objects.filter(asOf=testFirstDate, portfolio=portfolio, positionType = Enum.PositionType('CASH'), ticker = 'Cash', amount = 1000.0).exists(): position = ModelPosition() position.asOf=testFirstDate position.portfolio = portfolio position.positionType = Enum.PositionType('CASH') position.ticker = 'Cash' position.amount = 1000.0 position.save() curve = InterestRateCurve() curve.ccy = 'USD' curve.index = Enum.Index('LIBOR') curve.term = Enum.TimePeriod('M') curve.numTerms = 3 curve.pricingDate =testDate curve.marketId = 'TEST1' curve.addRate(InterestRate(type='Deposit', term=Enum.TimePeriod('M'), numTerms=1,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Deposit', term=Enum.TimePeriod('M'), numTerms=3,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=1,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=5,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=10,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=30,mid=0.01,curve=curve)) curve.save() curve = InterestRateCurve() curve.ccy = 'USD' curve.index = Enum.Index('LIBOR') curve.term = Enum.TimePeriod('M') curve.numTerms = 3 curve.pricingDate = testFirstDate curve.marketId = 'TEST1' curve.addRate(InterestRate(type='Deposit', term=Enum.TimePeriod('M'), numTerms=1,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Deposit', term=Enum.TimePeriod('M'), numTerms=3,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=1,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=5,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=10,mid=0.01,curve=curve)) curve.addRate(InterestRate(type='Swap', term=Enum.TimePeriod('Y'), numTerms=30,mid=0.01,curve=curve)) curve.save() if not SwaptionVolatilitySurface.objects.filter(ccy=Enum.Currency('USD'), index=Enum.Index('LIBOR'), term=Enum.TimePeriod('M'), numTerms=3, pricingDate=testDate, marketId='TEST1'): #Special case where I just append the vols. Should use a function vols = SwaptionVolatilitySurface(ccy=Enum.Currency('USD'), index=Enum.Index('LIBOR'), term=Enum.TimePeriod('M'), numTerms=3, pricingDate=testDate, marketId='TEST1') volPoints = [] volPoints.append(SwaptionVolatility(expiryTerm=Enum.TimePeriod('Y'), expiryNumTerms=1, underlyingTerm=Enum.TimePeriod('Y'), underlyingNumTerms=3, mid=0.40, surface=vols)) volPoints.append(SwaptionVolatility(expiryTerm=Enum.TimePeriod('Y'), expiryNumTerms=3, underlyingTerm=Enum.TimePeriod('Y'), underlyingNumTerms=3, mid=0.45, surface=vols)) volPoints.append(SwaptionVolatility(expiryTerm=Enum.TimePeriod('Y'), expiryNumTerms=1, underlyingTerm=Enum.TimePeriod('Y'), underlyingNumTerms=5, mid=0.5, surface=vols)) volPoints.append(SwaptionVolatility(expiryTerm=Enum.TimePeriod('Y'), expiryNumTerms=3, underlyingTerm=Enum.TimePeriod('Y'), underlyingNumTerms=5, mid=0.55, surface=vols)) vols.addVolatilities(volPoints) vols.save() if not BondOAS.objects.filter(tCBond=TCBond.objects.get(name='TEST1'),pricingDate=testDate, marketId='TEST1'): bondOAS = BondOAS(tCBond=TCBond.objects.get(name='TEST1'),pricingDate=testDate, marketId='TEST1',mid=0.0012) bondOAS.save() #done for only one test BondPositionTest.testLoadAndSaveMarketData if not BondOAS.objects.filter(tCBond=TCBond.objects.get(name='TEST1'),pricingDate=Date(month=1,day=1,year=2009), marketId='EOD'): bondOAS = BondOAS(tCBond=TCBond.objects.get(name='TEST1'),pricingDate=Date(month=1,day=1,year=2009), marketId='EOD',mid=0.01) bondOAS.save() #now load zero oas for all dates we do testing timePeriods = VARUtilities.VARTimePeriodsAndSteps() timePeriods.generate(start = Date(month=8,day=30,year=2011), end = Date(month=9,day=12,year=2011), num = 1, term = Enum.TimePeriod('D'), calendar = Calendar.US()) for timeStep in timePeriods.timeSteps: if not BondOAS.objects.filter(tCBond=TCBond.objects.get(name='TEST1'), pricingDate=timeStep, marketId='TEST1'): bondOAS = BondOAS(tCBond=TCBond.objects.get(name='TEST1'), pricingDate=timeStep, marketId='TEST1',mid=0.0) bondOAS.save() fileLoader = MarketDataLoader.EquityPriceLoader() fileLoader.loadStockPriceFromCSVFile(ROOT_PATH+'/misc/data/StockPricesForHVaRTests.csv') fileLoader.loadInterestRateFromCSVFile(ROOT_PATH+'/misc/data/InterestRatesForHVaRTests.csv') if not HvarConfiguration.objects.filter(name='TEST1').exists(): config = HvarConfiguration() config.name = 'TEST1' config.startDate = Date(month=8,day=30,year=2011).toPythonDate() config.endDate = Date(month=9,day=12,year=2011).toPythonDate() config.stepSize = 1 config.stepUnit = Enum.TimePeriod('D') config.calendar = Calendar.US() config.confLevel = 0.95 config.marketId = 'TEST1' config.save()