Пример #1
0
    def transceive_s(self, n):
        offset_n = n + 2 * (self.h_s_len - 1)  # 遅延を取る為に多く作っておく

        # 希望信号
        self.d_s = np.random.choice([0, 1], offset_n)
        self.s = m.modulate_qpsk(self.d_s)

        # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
        chanels_s = np.array([
            self.s[i:i + self.h_s_len]
            for i in range(self.s.size - self.h_s_len + 1)
        ])
        chanels_s = self.h_s * chanels_s
        y_s = np.sum(chanels_s, axis=1)

        r = y_s + m.awgn(y_s.shape, self.sigma)

        # 受信側非線形
        if self.lna == True:
            y_lna = m.sspa_rapp(r, self.a_sat, self.LNA_rho).squeeze()
        else:
            y_lna = r

        if self.rx_iqi == True:
            y_iq = m.iq_imbalance(y_lna, self.gamma, self.phi)
        else:
            y_iq = y_lna

        self.y = y_iq
Пример #2
0
    def transceive_s(self):
        # 送信信号
        self.d = np.random.choice([0, 1],
                                  (self.subcarrier * 2 * self.block, 1))
        x_n = m.modulate_qpsk(self.d)
        x_p = x_n.reshape((self.subcarrier, self.block), order='F')
        x_idft = np.matmul(self.idft_mat, x_p)
        x_cp = ofdm.add_cp(x_idft, self.CP)
        x = x_cp
        self.x = x_cp.flatten(order='F')
        tx_x = x

        # 送信側非線形
        if self.tx_iqi == True:
            tx_x = m.iq_imbalance(tx_x, self.gamma, self.phi)

        if self.pa == True:
            tx_x = m.sspa_rapp_ibo(tx_x,
                                   self.PA_IBO_dB,
                                   self.PA_rho,
                                   ofdm=True)

        x_rx = tx_x
        if self.h_si_len > 1:
            x_rx = np.zeros((self.h_si_len - 1 + tx_x.shape[0], tx_x.shape[1]),
                            dtype=complex)
            x_rx[:(self.h_si_len - 1), 1:] = tx_x[-(self.h_si_len - 1):, :-1]
            x_rx[(self.h_si_len - 1):, :] = tx_x

        self.y = np.zeros(
            (self.subcarrier_CP * self.block, self.receive_antenna),
            dtype=complex)
        for receive_antenna_i in range(self.receive_antenna):
            h_si = self.h_si_list[receive_antenna_i]

            toeplitz_h_si = ofdm.toeplitz_channel(h_si.T, self.h_si_len,
                                                  self.subcarrier, self.CP)

            r = np.matmul(toeplitz_h_si, x_rx) + m.awgn(
                (self.subcarrier + self.CP, self.block), self.sigma)

            # 受信側非線形
            if self.lna == True:
                r = m.polynomial_amplifier(r, self.LNA_alpha_1,
                                           self.LNA_alpha_2)

            if self.rx_iqi == True:
                r = m.iq_imbalance(r, self.gamma, self.phi)

            y = r.flatten(order='F')

            self.y[:, receive_antenna_i] = y
Пример #3
0
    def transceive_si(self, n):
        offset_n = n + 2 * (self.h_si_len - 1)  # 遅延を取る為に多く作っておく

        # 送信信号
        self.d = np.random.choice([0, 1], offset_n)
        self.x = m.modulate_qpsk(self.d)

        # 送信側非線形
        if self.tx_iqi == True:
            self.x_iq = m.iq_imbalance(self.x, self.gamma, self.phi)
        else:
            self.x_iq = self.x

        if self.pa == True:
            self.x_pa = m.sspa_rapp_ibo(self.x_iq, self.PA_IBO_dB, self.PA_rho)
        else:
            self.x_pa = self.x_iq

        # 通信路
        # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
        chanels_x_pa = np.array([
            self.x_pa[i:i + self.h_si_len]
            for i in range(self.x_pa.size - self.h_si_len + 1)
        ])
        chanels_y_si = self.h_si * chanels_x_pa
        y_si = np.sum(chanels_y_si, axis=1)
        r = y_si + m.awgn(y_si.shape, self.sigma)

        # 受信側非線形
        if self.lna == True:
            y_lna = m.sspa_rapp(r, self.a_sat, self.LNA_rho).squeeze()
        else:
            y_lna = r

        if self.rx_iqi == True:
            y_iq = m.iq_imbalance(y_lna, self.gamma, self.phi)
        else:
            y_iq = y_lna

        self.y = y_iq
Пример #4
0
    def set_lna_a_sat(self, n, LNA_IBO_dB):
        # TODO 調整する
        offset_n = n + 2 * (self.h_si_len - 1)  # 遅延を取る為に多く作っておく

        # 送信信号
        d = np.random.choice([0, 1], offset_n)
        x = m.modulate_qpsk(d)

        # 希望信号
        d_s = np.random.choice([0, 1], offset_n)
        s = m.modulate_qpsk(d_s)

        # 送信側非線形
        if self.tx_iqi == True:
            x_iq = m.iq_imbalance(x, self.gamma, self.phi)
        else:
            x_iq = x

        if self.pa == True:
            x_pa = m.sspa_rapp_ibo(x_iq, self.PA_IBO_dB, self.PA_rho)
        else:
            x_pa = x_iq

        # 通信路
        # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
        chanels_x_pa = np.array([
            x_pa[i:i + self.h_si_len]
            for i in range(x_pa.size - self.h_si_len + 1)
        ])
        chanels_y_si = self.h_si * chanels_x_pa
        y_si = np.sum(chanels_y_si, axis=1)

        # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
        chanels_s = np.array(
            [s[i:i + self.h_s_len] for i in range(s.size - self.h_s_len + 1)])
        chanels_s = self.h_s * chanels_s
        y_s = np.sum(chanels_s, axis=1)

        r = y_si + y_s + m.awgn(y_si.shape, self.sigma)
        self.a_sat = m.a_sat(r, LNA_IBO_dB)
Пример #5
0
    def __init__(self,
                 block: int,
                 subcarrier: int,
                 CP: int,
                 sigma: float,
                 gamma=0.0,
                 phi=0.0,
                 PA_IBO_dB=5,
                 PA_rho=2,
                 LNA_alpha_1=5,
                 LNA_alpha_2=2,
                 h_si_list=None,
                 h_s_list=None,
                 h_si_len=1,
                 h_s_len=1,
                 receive_antenna=1,
                 tx_iqi=True,
                 pa=True,
                 lna=True,
                 rx_iqi=True):
        self.block = block
        self.subcarrier = subcarrier
        self.CP = CP
        self.subcarrier_CP = subcarrier + CP

        # 必要な行列を生成する
        dft_mat = dft(subcarrier, scale="sqrtn")
        self.dft_mat = dft_mat
        self.idft_mat = dft_mat.conj().T

        self.cp_zero = np.hstack((np.zeros(
            (subcarrier, CP)), np.eye(subcarrier)))

        # ここまで

        # 送信信号
        self.d = np.random.choice([0, 1], (subcarrier * 2 * block, 1))
        x_n = m.modulate_qpsk(self.d)
        x_p = x_n.reshape((subcarrier, block), order='F')
        x_idft = np.matmul(self.idft_mat, x_p)
        x_cp = ofdm.add_cp(x_idft, CP)
        x = x_cp
        self.x = x_cp.flatten(order='F')
        tx_x = x

        # 送信側非線形
        if tx_iqi == True:
            tx_x = m.iq_imbalance(tx_x, gamma, phi)

        if pa == True:
            tx_x = m.sspa_rapp_ibo(tx_x, PA_IBO_dB, PA_rho, ofdm=True)

        # 希望信号
        self.d_s = np.random.choice([0, 1], (subcarrier * 2 * block, 1))
        s_n = m.modulate_qpsk(self.d_s)
        # self.s = s_n # シリアルの状態を保持する
        s_p = s_n.reshape((subcarrier, block), order='F')
        s_idft = np.matmul(self.idft_mat, s_p)
        s_cp = ofdm.add_cp(s_idft, CP)
        self.tilde_s = s_cp

        x_rx = tx_x
        if h_si_len > 1:
            x_rx = np.zeros((h_si_len - 1 + tx_x.shape[0], tx_x.shape[1]),
                            dtype=complex)
            x_rx[:(h_si_len - 1), 1:] = tx_x[-(h_si_len - 1):, :-1]
            x_rx[(h_si_len - 1):, :] = tx_x

        s_rx = s_cp
        if h_s_len > 1:
            s_rx = np.zeros((h_s_len - 1 + s_cp.shape[0], s_cp.shape[1]),
                            dtype=complex)
            s_rx[:(h_s_len - 1), 1:] = s_cp[-(h_s_len - 1):, :-1]
            s_rx[(h_s_len - 1):, :] = s_cp

        self.y = np.zeros((self.subcarrier_CP * block, receive_antenna),
                          dtype=complex)
        for receive_antenna_i in range(receive_antenna):
            h_si = h_si_list[receive_antenna_i]
            h_s = h_s_list[receive_antenna_i]

            toeplitz_h_si = ofdm.toeplitz_channel(h_si.T, h_si_len, subcarrier,
                                                  CP)
            toeplitz_h_s = ofdm.toeplitz_channel(h_s.T, h_s_len, subcarrier,
                                                 CP)

            r = np.matmul(toeplitz_h_si, x_rx) + np.matmul(
                toeplitz_h_s, s_rx) + m.awgn((subcarrier + CP, block), sigma)

            # 受信側非線形
            if lna == True:
                r = m.polynomial_amplifier(r, LNA_alpha_1, LNA_alpha_2)

            if rx_iqi == True:
                r = m.iq_imbalance(r, gamma, phi)

            y = r.flatten(order='F')

            self.y[:, receive_antenna_i] = y
Пример #6
0
        for sigma_index, sigma in enumerate(sigmas):
            noise_var = sigma**2

            d_s = np.random.choice([0, 1], n)
            s = m.modulate_qpsk(d_s)

            H = toeplitz_chanel(h_s.T, h_s_len, L_w)

            chanels_s = np.array([
                s[i:i + h_s_len] for i in range(s.size - h_s_len + 1)
            ])  # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
            chanels_s = h_s * chanels_s
            y_s = np.sum(chanels_s, axis=1)

            r = y_s + m.awgn(y_s.shape, sigma)
            size = r.shape[0]
            r_vec = np.array([r[i:i + size - L_w] for i in range(L_w + 1)])

            W = mmse(H, noise_var)
            z = np.matmul(W.conj().T, r_vec)

            d_hat = m.demodulate_qpsk(z)
            error = np.sum(d_s[0:d_hat.shape[0]] != d_hat)

            error_array[sigma_index][trials_index] = error

    ber_fig, ber_ax = graph.new_snr_ber_canvas(snr_min, snr_max)
    n_sum = (n - 2 * h_s_len) * ave

    errors_sum = np.sum(error_array, axis=1)
Пример #7
0
    D_1 = np.linalg.inv(D)

    for sigma_index, sigma in enumerate(sigmas):
        d = np.random.choice([0, 1], (params['subcarrier'] * 2 * params['block'], 1))
        s_n = m.modulate_qpsk(d)
        s = s_n.reshape(params['subcarrier'], params['block'])
        x = np.matmul(FH, s)
        x_cp = ofdm.add_cp(x, params['CP'])

        x_receive = x_cp
        if params["chanel_len"] > 1:
            x_receive = np.zeros((params['chanel_len'] - 1 + x_cp.shape[0], x_cp.shape[1]), dtype=complex)
            x_receive[:(params["chanel_len"] - 1), 1:] = x_cp[-(params["chanel_len"] - 1):, :-1]
            x_receive[(params["chanel_len"] - 1):, :] = x_cp

        noise = m.awgn((params['subcarrier'] + params['CP'], params['block']), sigma)
        r = np.matmul(H, x_receive) + noise

        r_s = r.flatten()

        y_p = r_s.reshape((params['subcarrier'] + params['CP'], params['block']))
        y_remove_cp = np.matmul(ofdm_zero, y_p)
        y = np.matmul(F, y_remove_cp)

        s_hat = np.matmul(D_1, y)
        s_n_hat = s_hat.reshape(params['subcarrier'] * params['block'])
        d_hat = m.demodulate_qpsk(s_n_hat).reshape((params['subcarrier'] * 2 * params['block'], 1))
        error = np.sum(d != d_hat)

        errors[sigma_index][trials_index] = error
Пример #8
0
for trials_index in range(params['SNR_AVERAGE']):
    h_si = m.channel(1, params['chanel_len'])
    Hc = ofdm.circulant_channel(h_si.T, params['chanel_len'],
                                params['subcarrier'])

    D = F @ Hc @ FH
    D_1 = np.linalg.inv(D)

    for sigma_index, sigma in enumerate(sigmas):
        d = np.random.choice([0, 1],
                             (params['subcarrier'] * 2 * params['block'], 1))
        s_n = m.modulate_qpsk(d)
        s = s_n.reshape(params['subcarrier'], params['block'])
        x = np.matmul(FH, s)

        noise = m.awgn((params['subcarrier'], params['block']), sigma)
        r = np.matmul(Hc, x) + noise

        y = np.matmul(F, r)

        s_hat = np.matmul(D_1, y)
        s_n_hat = s_hat.reshape(params['subcarrier'] * params['block'])
        d_hat = m.demodulate_qpsk(s_n_hat).reshape(
            (params['subcarrier'] * 2 * params['block'], 1))
        error = np.sum(d != d_hat)

        errors[sigma_index][trials_index] = error

        ### QPSK
        q_r = (h_si * s_n) + m.awgn(
            (params['subcarrier'] * params['block'], 1), sigma)
Пример #9
0
    def __init__(self,
                 n,
                 sigma,
                 gamma=0.0,
                 phi=0.0,
                 PA_IBO_dB=5,
                 PA_rho=2,
                 LNA_IBO_dB=5,
                 LNA_rho=2,
                 h_si_list=None,
                 h_s_list=None,
                 h_si_len=1,
                 h_s_len=1,
                 receive_antenna=1,
                 tx_iqi=True,
                 pa=True,
                 lna=True,
                 rx_iqi=True):
        # 送信信号
        self.d = np.random.choice([0, 1], n)
        self.x = m.modulate_qpsk(self.d)

        # 希望信号
        self.d_s = np.random.choice([0, 1], n)
        self.s = m.modulate_qpsk(self.d_s)

        # 送信側非線形

        if tx_iqi == True:
            self.x_iq = m.iq_imbalance(self.x, gamma, phi)
        else:
            self.x_iq = self.x

        if pa == True:
            self.x_pa = m.sspa_rapp_ibo(self.x_iq, PA_IBO_dB, PA_rho)
        else:
            self.x_pa = self.x_iq

        # 通信路
        # 通信路がランダムの場合
        if h_si_list is None:
            h_si_list = [m.channel(size=self.x_pa.size)]
        if h_s_list is None:
            h_s_list = [m.channel(size=self.s.size)]

        self.h_si_list = h_si_list
        self.h_s_list = h_s_list

        x_len = self.x_pa.size - h_si_len + 1  # 周波数選択性の場合,時間のずれを考慮すると長さがnではなくなる
        self.y = np.zeros((x_len, receive_antenna), dtype=complex)
        for i, (h_si, h_s) in enumerate(zip(h_si_list, h_s_list)):
            chanels_x_pa = np.array([
                self.x_pa[i:i + h_si_len]
                for i in range(self.x_pa.size - h_si_len + 1)
            ])  # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
            chanels_y_si = h_si * chanels_x_pa
            y_si = np.sum(chanels_y_si, axis=1)
            chanels_s = np.array([
                self.s[i:i + h_s_len] for i in range(self.s.size - h_s_len + 1)
            ])  # [[x[n], x[n-1]], x[x-1], x[n-1]]のように通信路の数に合わせる
            chanels_s = h_s * chanels_s
            y_s = np.sum(chanels_s, axis=1)
            r = y_si + y_s + m.awgn(y_s.shape, sigma)

            # 受信側非線形
            if lna == True:
                y_lna = m.sspa_rapp_ibo(r, LNA_IBO_dB, LNA_rho).squeeze()
            else:
                y_lna = r

            if rx_iqi == True:
                y_iq = m.iq_imbalance(y_lna, gamma, phi)
            else:
                y_iq = y_lna

            self.y[:, i] = y_iq