Пример #1
0
def transform_problem(multilabel_dataset, feature_selector, classifier) -> []:
    partitioned_datasets = partition_dataset(multilabel_dataset)

    fitted_feature_selectors =                                                      \
        Stream(partitioned_datasets)                                                \
        .map(lambda elem: select_features(elem, feature_selector)).as_list()

    partitioned_results =                               \
        Stream(fitted_feature_selectors)                \
        .map(lambda elem: classify(elem, classifier))   \
        .as_list()

    return combine_partitioned_results(multilabel_dataset, partitioned_results)
Пример #2
0
def partition_dataset(multilabel_dataset):
    partitioned_labels = partition_labels(multilabel_dataset)

    return                                                                                  \
        Stream(partitioned_labels)                                                          \
        .map(lambda label_partition: augment_label(multilabel_dataset, label_partition))    \
        .as_list()
    def test_chaining(self):
        expected = [3, 5]
        actual =                            \
            Stream([1, 2, 3, 4])            \
        .filter(lambda elem: elem%2 == 0)   \
        .map(lambda elem: elem+1)           \
        .as_list()                          \

        assert expected == actual, "should be [3, 5]"
    def test_append_elem(self):
        expected = [1, 2, 3, 4]
        actual =                \
            Stream([1, 2])      \
            .append_elem(3)     \
            .append_elem(4)     \
            .as_list()

        print("actual: ", actual)

        assert expected == actual, "should be [1, 2, 3, 4]"
    def test_append_list(self):
        expected = [1, 2, 3, 4, 5, 6]
        actual =                        \
            Stream([1, 2])              \
            .append_list([3, 4])        \
            .append_list([5, 6])        \
            .as_list()

        print("actual: ", actual)

        assert expected == actual, "should be [1, 2, 3, 4, 5, 6]"
    def test_map(self):
        expected = [2, 3, 4, 5]
        actual = Stream([1, 2, 3, 4]).map(lambda elem: elem + 1).as_list()

        assert expected == actual, "should be [2, 3, 4, 5]"
    def test_filter(self):
        expected = [2, 4]
        actual = Stream([1, 2, 3,
                         4]).filter(lambda elem: elem % 2 == 0).as_list()

        assert expected == actual, "should be all even numbers"
Пример #8
0
def create_labels_dataframe(multilabel_dataset, partitioned_results):
    labels = get_total_labels_test(multilabel_dataset)
    label_names = Stream(labels).map(lambda elem: elem[0]).as_list()

    return DataFrame(partitioned_results, index=label_names).transpose()
Пример #9
0
def create_features_dataframe(multilabel_dataset):
    features = get_instance_features_test(multilabel_dataset)
    total_features = get_total_features_test(multilabel_dataset)
    feature_names = Stream(total_features).map(lambda elem: elem[0]).as_list()

    return DataFrame(features, columns=feature_names)