def pretrain(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 100, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0): """Pretrains the weights for the Deep SVDD network \phi via autoencoder.""" self.ae_net = build_autoencoder(self.net_name) self.ae_optimizer_name = optimizer_name self.ae_trainer = AETrainer(optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay, device=device, n_jobs_dataloader=n_jobs_dataloader) self.ae_net = self.ae_trainer.train(dataset, self.ae_net) self.ae_trainer.test(dataset, self.ae_net) self.init_network_weights_from_pretraining()
class DeepSVDD(object): """A class for the Deep SVDD method. Attributes: objective: A string specifying the objective. net_name: A string indicating the name of the neural network to use. net: The neural network \phi. ae_net: The autoencoder network corresponding to \phi for network weights pretraining. optimizer_name: A string indicating the optimizer to use for training the Deep SVDD network. ae_trainer: AETrainer to train an autoencoder in pretraining. ae_optimizer_name: A string indicating the optimizer to use for pretraining the autoencoder. results: A dictionary to save the results. """ def __init__(self, objective: str = 'one-class', nu: float = 0.1): """Inits DeepSVDD with one of the two objectives and hyperparameter nu.""" assert objective in ( 'one-class', 'soft-boundary' ), "Objective must be either 'one-class' or 'soft-boundary'." self.objective = objective assert (0 < nu) & ( nu <= 1), "For hyperparameter nu, it must hold: 0 < nu <= 1." self.net_name = None self.net = None # neural network self.optimizer_name = None self.ae_net = None # autoencoder network for pretraining self.ae_trainer = None self.ae_optimizer_name = None self.results = { 'train_time': None, 'test_auc': None, 'test_time': None, 'test_scores': None, } def pretrain(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 100, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0): self.ae_net = build_autoencoder(self.net_name) self.ae_optimizer_name = optimizer_name self.ae_trainer = AETrainer(optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay, device=device, n_jobs_dataloader=n_jobs_dataloader) self.ae_net = self.ae_trainer.train(dataset, self.ae_net) self.ae_trainer.test(dataset, self.ae_net) def save_model(self, export_model, save_ae=True): """Save the model to export_model.""" #net_dict = self.net.state_dict() ae_net_dict = self.ae_net.state_dict() if save_ae else None torch.save({'ae_net_dict': ae_net_dict}, export_model) def load_model(self, model_path, load_ae=False): """Load model from model_path.""" model_dict = torch.load(model_path, map_location='cpu') if load_ae: self.ae_net.load_state_dict(model_dict['ae_net_dict']) def save_results(self, export_json): """Save results dict to a JSON-file.""" with open(export_json, 'w') as fp: json.dump(self.results, fp)
class DeepSVDD(object): """A class for the Deep SVDD method. Attributes: objective: A string specifying the Deep SVDD objective (either 'one-class' or 'soft-boundary'). nu: Deep SVDD hyperparameter nu (must be 0 < nu <= 1). R: Hypersphere radius R. c: Hypersphere center c. net_name: A string indicating the name of the neural network to use. net: The neural network \phi. ae_net: The autoencoder network corresponding to \phi for network weights pretraining. trainer: DeepSVDDTrainer to train a Deep SVDD model. optimizer_name: A string indicating the optimizer to use for training the Deep SVDD network. ae_trainer: AETrainer to train an autoencoder in pretraining. ae_optimizer_name: A string indicating the optimizer to use for pretraining the autoencoder. results: A dictionary to save the results. """ def __init__(self, objective: str = 'one-class', nu: float = 0.1): """Inits DeepSVDD with one of the two objectives and hyperparameter nu.""" assert objective in ('one-class', 'soft-boundary'), "Objective must be either 'one-class' or 'soft-boundary'." self.objective = objective assert (0 < nu) & (nu <= 1), "For hyperparameter nu, it must hold: 0 < nu <= 1." self.nu = nu self.R = 0.0 # hypersphere radius R self.c = None # hypersphere center c self.net_name = None self.net = None # neural network \phi self.trainer = None self.optimizer_name = None self.ae_net = None # autoencoder network for pretraining self.ae_trainer = None self.ae_optimizer_name = None self.results = { 'train_time': None, 'test_auc': None, 'test_time': None, 'test_scores': None, } def set_network(self, net_name): """Builds the neural network \phi.""" self.net_name = net_name self.net = build_network(net_name) def train(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 50, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0): """Trains the Deep SVDD model on the training data.""" self.optimizer_name = optimizer_name self.trainer = DeepSVDDTrainer(self.objective, self.R, self.c, self.nu, optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay, device=device, n_jobs_dataloader=n_jobs_dataloader) # Get the model self.net = self.trainer.train(dataset, self.net) self.R = float(self.trainer.R.cpu().data.numpy()) # get float self.c = self.trainer.c.cpu().data.numpy().tolist() # get list self.results['train_time'] = self.trainer.train_time def test(self, dataset: BaseADDataset, device: str = 'cuda', n_jobs_dataloader: int = 0): """Tests the Deep SVDD model on the test data.""" if self.trainer is None: self.trainer = DeepSVDDTrainer(self.objective, self.R, self.c, self.nu, device=device, n_jobs_dataloader=n_jobs_dataloader) self.trainer.test(dataset, self.net) # Get results self.results['test_auc'] = self.trainer.test_auc self.results['test_time'] = self.trainer.test_time self.results['test_scores'] = self.trainer.test_scores def pretrain(self, dataset: BaseADDataset, optimizer_name: str = 'adam', lr: float = 0.001, n_epochs: int = 100, lr_milestones: tuple = (), batch_size: int = 128, weight_decay: float = 1e-6, device: str = 'cuda', n_jobs_dataloader: int = 0): """Pretrains the weights for the Deep SVDD network \phi via autoencoder.""" self.ae_net = build_autoencoder(self.net_name) self.ae_optimizer_name = optimizer_name self.ae_trainer = AETrainer(optimizer_name, lr=lr, n_epochs=n_epochs, lr_milestones=lr_milestones, batch_size=batch_size, weight_decay=weight_decay, device=device, n_jobs_dataloader=n_jobs_dataloader) self.ae_net = self.ae_trainer.train(dataset, self.ae_net) self.ae_trainer.test(dataset, self.ae_net) self.init_network_weights_from_pretraining() def init_network_weights_from_pretraining(self): """Initialize the Deep SVDD network weights from the encoder weights of the pretraining autoencoder.""" net_dict = self.net.state_dict() ae_net_dict = self.ae_net.state_dict() # Filter out decoder network keys ae_net_dict = {k: v for k, v in ae_net_dict.items() if k in net_dict} # Overwrite values in the existing state_dict net_dict.update(ae_net_dict) # Load the new state_dict self.net.load_state_dict(net_dict) def save_model(self, export_model, save_ae=True): """Save Deep SVDD model to export_model.""" net_dict = self.net.state_dict() ae_net_dict = self.ae_net.state_dict() if save_ae else None torch.save({'R': self.R, 'c': self.c, 'net_dict': net_dict, 'ae_net_dict': ae_net_dict}, export_model) def load_model(self, model_path, load_ae=False): """Load Deep SVDD model from model_path.""" model_dict = torch.load(model_path) self.R = model_dict['R'] self.c = model_dict['c'] self.net.load_state_dict(model_dict['net_dict']) if load_ae: if self.ae_net is None: self.ae_net = build_autoencoder(self.net_name) self.ae_net.load_state_dict(model_dict['ae_net_dict']) def save_results(self, export_json): """Save results dict to a JSON-file.""" with open(export_json, 'w') as fp: json.dump(self.results, fp)