Пример #1
0
def learn(X, Y):
    pca = None
    dictionary = None
    model = None

    # Data augmentation
    if DO_DATA_AUGMENTATION:
        print("Augmenting data")
        X, Y = transform_T(X, Y)
        print("Number of samples augmented to {}".format(X.shape[0]))

    # Dictionary learning
    if DO_DICTIONARY_LEARNING:
        dictionary = Dictionary(n_atoms=128, atom_width=16)
        if dictionary.weights_available:
            print("Loading dictionary")
            dictionary.load()
        else:
            print("Learning dictionary")
            tic = time.time()
            dictionary.fit(X)
            dictionary.save()
            print("Dictionary learned in {0:.1f}s".format(time.time() - tic))
        print("Getting dictionary representation")
        X = dictionary.get_representation(X)

    # PCA
    if DO_PCA:
        tic = time.time()
        print("Applying PCA")
        n_components = 100
        pca = PCA(n_components=n_components)
        X = pca.fit(X, scale=False)
        print("Variance explained: {:.2f}".format(np.sum(pca.e_values_ratio_)))
        print("PCA applied in {0:.1f}s".format(time.time() - tic))

    # Training
    print("Starting training")
    tic = time.time()
    model = KernelSVM(C=1, kernel='rbf')
    model.train(X, Y)
    print("Model trained in {0:.1f}s".format(time.time() - tic))

    return pca, dictionary, model
Пример #2
0
from src.ovr import OVR

SHAPE = (46, 56)

M = 121
standard = False

data = fetch_data(ratio=0.8)

X_train, y_train = data['train']

D, N = X_train.shape

pca = PCA(n_comps=M, standard=standard)

W_train = pca.fit(X_train)

X_test, y_test = data['test']
I, K = X_test.shape

W_test = pca.transform(X_test)

params = {'C': 1, 'gamma': 2e-4, 'kernel': 'linear'}

ovr = OVR(**params)
ovr.fit(W_train, y_train)

y_hat = ovr.predict(W_test[::-1]).ravel()

done = {'success': False, 'failure': False}