Пример #1
0
def ssd_eval(dataset_path, ckpt_path, anno_json):
    """SSD evaluation."""
    batch_size = 1
    ds = create_ssd_dataset(dataset_path,
                            batch_size=batch_size,
                            repeat_num=1,
                            is_training=False,
                            use_multiprocessing=False)
    if config.model == "ssd300":
        net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
    elif config.model == "ssd_vgg16":
        net = ssd_vgg16(config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        net = ssd_mobilenet_v1_fpn(config=config)
    elif config.model == "ssd_resnet50_fpn":
        net = ssd_resnet50_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    net = SsdInferWithDecoder(net, Tensor(default_boxes), config)

    print("Load Checkpoint!")
    param_dict = load_checkpoint(ckpt_path)
    net.init_parameters_data()
    load_param_into_net(net, param_dict)

    net.set_train(False)
    total = ds.get_dataset_size() * batch_size
    print("\n========================================\n")
    print("total images num: ", total)
    print("Processing, please wait a moment.")
    eval_param_dict = {"net": net, "dataset": ds, "anno_json": anno_json}
    mAP = apply_eval(eval_param_dict)
    print("\n========================================\n")
    print(f"mAP: {mAP}")
Пример #2
0
def ssd_model_build(args_opt):
    if config.model == "ssd300":
        backbone = ssd_mobilenet_v2()
        ssd = SSD300(backbone=backbone, config=config)
        init_net_param(ssd)
        if args_opt.freeze_layer == "backbone":
            for param in backbone.feature_1.trainable_params():
                param.requires_grad = False
    elif config.model == "ssd_mobilenet_v1_fpn":
        ssd = ssd_mobilenet_v1_fpn(config=config)
        init_net_param(ssd)
        if config.feature_extractor_base_param != "":
            param_dict = load_checkpoint(config.feature_extractor_base_param)
            for x in list(param_dict.keys()):
                param_dict["network.feature_extractor.mobilenet_v1." + x] = param_dict[x]
                del param_dict[x]
            load_param_into_net(ssd.feature_extractor.mobilenet_v1.network, param_dict)
    elif config.model == "ssd_resnet50_fpn":
        ssd = ssd_resnet50_fpn(config=config)
        init_net_param(ssd)
        if config.feature_extractor_base_param != "":
            param_dict = load_checkpoint(config.feature_extractor_base_param)
            for x in list(param_dict.keys()):
                param_dict["network.feature_extractor.resnet." + x] = param_dict[x]
                del param_dict[x]
            load_param_into_net(ssd.feature_extractor.resnet, param_dict)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    return ssd
Пример #3
0
def ssd_eval(dataset_path, ckpt_path, anno_json):
    """SSD evaluation."""
    batch_size = 1
    ds = create_ssd_dataset(dataset_path,
                            batch_size=batch_size,
                            repeat_num=1,
                            is_training=False,
                            use_multiprocessing=False)
    if config.model == "ssd300":
        net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
    elif config.model == "ssd_vgg16":
        net = ssd_vgg16(config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        net = ssd_mobilenet_v1_fpn(config=config)
    elif config.model == "ssd_resnet50_fpn":
        net = ssd_resnet50_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    net = SsdInferWithDecoder(net, Tensor(default_boxes), config)

    print("Load Checkpoint!")
    param_dict = load_checkpoint(ckpt_path)
    net.init_parameters_data()
    load_param_into_net(net, param_dict)

    net.set_train(False)
    i = batch_size
    total = ds.get_dataset_size() * batch_size
    start = time.time()
    pred_data = []
    print("\n========================================\n")
    print("total images num: ", total)
    print("Processing, please wait a moment.")
    for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1):
        img_id = data['img_id']
        img_np = data['image']
        image_shape = data['image_shape']

        output = net(Tensor(img_np))
        for batch_idx in range(img_np.shape[0]):
            pred_data.append({
                "boxes": output[0].asnumpy()[batch_idx],
                "box_scores": output[1].asnumpy()[batch_idx],
                "img_id": int(np.squeeze(img_id[batch_idx])),
                "image_shape": image_shape[batch_idx]
            })
        percent = round(i / total * 100., 2)

        print(f'    {str(percent)} [{i}/{total}]', end='\r')
        i += batch_size
    cost_time = int((time.time() - start) * 1000)
    print(f'    100% [{total}/{total}] cost {cost_time} ms')
    mAP = metrics(pred_data, anno_json)
    print("\n========================================\n")
    print(f"mAP: {mAP}")
Пример #4
0
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
                    help="device target")
args = parser.parse_args()

context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if args.device_target == "Ascend":
    context.set_context(device_id=args.device_id)

if __name__ == '__main__':
    if config.model == "ssd300":
        net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
    elif config.model == "ssd_vgg16":
        net = ssd_vgg16(config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        net = ssd_mobilenet_v1_fpn(config=config)
    elif config.model == "ssd_resnet50_fpn":
        net = ssd_resnet50_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    net = SsdInferWithDecoder(net, Tensor(default_boxes), config)

    param_dict = load_checkpoint(args.ckpt_file)
    net.init_parameters_data()
    load_param_into_net(net, param_dict)
    net.set_train(False)

    input_shp = [args.batch_size, 3] + config.img_shape
    input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp), mindspore.float32)
    export(net, input_array, file_name=args.file_name, file_format=args.file_format)
Пример #5
0
def main():
    args_opt = get_args()
    rank = 0
    device_num = 1
    if args_opt.run_platform == "CPU":
        context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    else:
        context.set_context(mode=context.GRAPH_MODE,
                            device_target=args_opt.run_platform,
                            device_id=args_opt.device_id)
        if args_opt.distribute:
            device_num = args_opt.device_num
            context.reset_auto_parallel_context()
            context.set_auto_parallel_context(
                parallel_mode=ParallelMode.DATA_PARALLEL,
                gradients_mean=True,
                device_num=device_num)
            init()
            context.set_auto_parallel_context(
                all_reduce_fusion_config=[29, 58, 89])
            rank = get_rank()

    mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord",
                                        True)

    if args_opt.only_create_dataset:
        return

    loss_scale = float(args_opt.loss_scale)
    if args_opt.run_platform == "CPU":
        loss_scale = 1.0

    # When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
    use_multiprocessing = (args_opt.run_platform != "CPU")
    dataset = create_ssd_dataset(mindrecord_file,
                                 repeat_num=1,
                                 batch_size=args_opt.batch_size,
                                 device_num=device_num,
                                 rank=rank,
                                 use_multiprocessing=use_multiprocessing)

    dataset_size = dataset.get_dataset_size()
    print("Create dataset done!")

    backbone = ssd_mobilenet_v2()
    if config.model == "ssd300":
        ssd = SSD300(backbone=backbone, config=config)
    elif config.model == "ssd_mobilenet_v1_fpn":
        ssd = ssd_mobilenet_v1_fpn(config=config)
    else:
        raise ValueError(f'config.model: {config.model} is not supported')
    if args_opt.run_platform == "GPU":
        ssd.to_float(dtype.float16)
    net = SSDWithLossCell(ssd, config)

    init_net_param(net)

    if config.feature_extractor_base_param != "":
        param_dict = load_checkpoint(config.feature_extractor_base_param)
        for x in list(param_dict.keys()):
            param_dict["network.feature_extractor.mobilenet_v1." +
                       x] = param_dict[x]
            del param_dict[x]
        load_param_into_net(ssd.feature_extractor.mobilenet_v1.network,
                            param_dict)

    # checkpoint
    ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size *
                                   args_opt.save_checkpoint_epochs)
    save_ckpt_path = './ckpt_' + str(rank) + '/'
    ckpoint_cb = ModelCheckpoint(prefix="ssd",
                                 directory=save_ckpt_path,
                                 config=ckpt_config)

    if args_opt.pre_trained:
        param_dict = load_checkpoint(args_opt.pre_trained)
        if args_opt.filter_weight:
            filter_checkpoint_parameter(param_dict)
        load_param_into_net(net, param_dict)

    if args_opt.freeze_layer == "backbone":
        for param in backbone.feature_1.trainable_params():
            param.requires_grad = False

    lr = Tensor(
        get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
               lr_init=config.lr_init,
               lr_end=config.lr_end_rate * args_opt.lr,
               lr_max=args_opt.lr,
               warmup_epochs=config.warmup_epochs,
               total_epochs=args_opt.epoch_size,
               steps_per_epoch=dataset_size))

    if "use_global_norm" in config and config.use_global_norm:
        opt = nn.Momentum(
            filter(lambda x: x.requires_grad, net.get_parameters()), lr,
            config.momentum, config.weight_decay, 1.0)
        net = TrainingWrapper(net, opt, loss_scale, True)
    else:
        opt = nn.Momentum(
            filter(lambda x: x.requires_grad, net.get_parameters()), lr,
            config.momentum, config.weight_decay, loss_scale)
        net = TrainingWrapper(net, opt, loss_scale)

    callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
    model = Model(net)
    dataset_sink_mode = False
    if args_opt.mode == "sink" and args_opt.run_platform != "CPU":
        print("In sink mode, one epoch return a loss.")
        dataset_sink_mode = True
    print(
        "Start train SSD, the first epoch will be slower because of the graph compilation."
    )
    model.train(args_opt.epoch_size,
                dataset,
                callbacks=callback,
                dataset_sink_mode=dataset_sink_mode)