Пример #1
0
def load_neutron_NESDIS_data(fname, start_date, end_date, anom=True):

    raw = np.loadtxt(fname, skiprows=2)
    data = []
    time = []
    for year in range(raw.shape[0]):
        for month in range(1, 13):
            dat = float(raw[year, month])
            if dat == 9999.:
                dat = (float(raw[year, month - 2]) + float(
                    raw[year, month - 1]) + float(raw[year, month + 1]) +
                       float(raw[year, month + 2])) / 4.
            data.append(dat)
            time.append(date(int(raw[year, 0]), month, 1).toordinal())

    g = DataField(data=np.array(data), time=np.array(time))
    g.location = ('%s cosmic data' % (fname[32].upper() + fname[33:-4]))

    g.select_date(start_date, end_date)

    if anom:
        g.anomalise()

    if NUM_SURR != 0:
        g_surr = SurrogateField()
        seasonality = g.get_seasonality()
        g_surr.copy_field(g)

        g.return_seasonality(seasonality[0], seasonality[1], None)
    else:
        g_surr, seasonality = None, None

    return g, g_surr, seasonality
Пример #2
0
def load_CR_climax_daily_data(fname, start_date, end_date, anom = False):
    from dateutil.relativedelta import relativedelta

    raw = np.loadtxt(fname)
    time = []
    datenow = date(1994, 1, 1)
    delta = timedelta(days = 1)
    for t in range(raw.shape[0]):
        time.append(datenow.toordinal())

        datenow += delta

    print raw.shape
    print len(time)
    g = DataField(data = np.array(raw), time = np.array(time))
    g.location = 'Climax, CO cosmic data'

    g.select_date(start_date, end_date)

    if anom:
        g.anomalise()

    if NUM_SURR != 0:
        g_surr = SurrogateField()
        seasonality = g.get_seasonality(True)
        g_surr.copy_field(g)

        g.return_seasonality(seasonality[0], seasonality[1], seasonality[2])
    else:
        g_surr, seasonality = None, None

    return g, g_surr, seasonality
Пример #3
0
def load_CR_climax_daily_data(fname, start_date, end_date, anom=False):
    from dateutil.relativedelta import relativedelta

    raw = np.loadtxt(fname)
    time = []
    datenow = date(1994, 1, 1)
    delta = timedelta(days=1)
    for t in range(raw.shape[0]):
        time.append(datenow.toordinal())

        datenow += delta

    print raw.shape
    print len(time)
    g = DataField(data=np.array(raw), time=np.array(time))
    g.location = 'Climax, CO cosmic data'

    g.select_date(start_date, end_date)

    if anom:
        g.anomalise()

    if NUM_SURR != 0:
        g_surr = SurrogateField()
        seasonality = g.get_seasonality(True)
        g_surr.copy_field(g)

        g.return_seasonality(seasonality[0], seasonality[1], seasonality[2])
    else:
        g_surr, seasonality = None, None

    return g, g_surr, seasonality
Пример #4
0
def load_neutron_NESDIS_data(fname, start_date, end_date, anom = True):


    raw = np.loadtxt(fname, skiprows = 2)
    data = []
    time = []
    for year in range(raw.shape[0]):
        for month in range(1,13):
            dat = float(raw[year, month])
            if dat == 9999.:
                dat = (float(raw[year, month-2]) + float(raw[year, month-1]) + float(raw[year, month+1]) + float(raw[year, month+2])) / 4.
            data.append(dat)
            time.append(date(int(raw[year,0]), month, 1).toordinal())

    g = DataField(data = np.array(data), time = np.array(time))
    g.location = ('%s cosmic data' % (fname[32].upper() + fname[33:-4]))

    g.select_date(start_date, end_date)

    if anom:
        g.anomalise()

    if NUM_SURR != 0:
        g_surr = SurrogateField()
        seasonality = g.get_seasonality()
        g_surr.copy_field(g)

        g.return_seasonality(seasonality[0], seasonality[1], None)
    else:
        g_surr, seasonality = None, None

    return g, g_surr, seasonality
Пример #5
0
def load_cosmic_data(fname,
                     start_date,
                     end_date,
                     anom=True,
                     daily=False,
                     corrected=True):
    # corrected stands for if use corrected data or not
    from dateutil.relativedelta import relativedelta

    raw = open(fname).read()
    lines = raw.split('\n')
    data = []
    time = []
    d = date(int(lines[0][:4]), int(lines[0][5:7]), 1)
    if not daily:
        delta = relativedelta(months=+1)
    elif daily:
        delta = timedelta(days=1)
    for line in lines:
        row = line.split(' ')
        if len(row) < 6:
            continue
        time.append(d.toordinal())
        if corrected:
            data.append(float(row[4]))
        else:
            data.append(float(row[5]))
        d += delta

    g = DataField(data=np.array(data), time=np.array(time))
    g.location = 'Oulu cosmic data'

    g.select_date(start_date, end_date)

    if anom:
        g.anomalise()

    g.data = X[:, 0].copy()

    if NUM_SURR != 0:
        g_surr = SurrogateField()
        seasonality = g.get_seasonality(True)
        g_surr.copy_field(g)

        g.return_seasonality(seasonality[0], seasonality[1], seasonality[2])
    else:
        g_surr, seasonality = None, None

    return g, g_surr, seasonality
Пример #6
0
def load_cosmic_data(fname, start_date, end_date, anom = True, daily = False, corrected = True):
    # corrected stands for if use corrected data or not
    from dateutil.relativedelta import relativedelta

    raw = open(fname).read()
    lines = raw.split('\n')
    data = []
    time = []
    d = date(int(lines[0][:4]), int(lines[0][5:7]), 1)
    if not daily:
        delta = relativedelta(months = +1)
    elif daily:
        delta = timedelta(days = 1)
    for line in lines:
        row = line.split(' ')
        if len(row) < 6:
            continue
        time.append(d.toordinal())
        if corrected:
            data.append(float(row[4]))
        else:
            data.append(float(row[5]))
        d += delta

    g = DataField(data = np.array(data), time = np.array(time))
    g.location = 'Oulu cosmic data'

    g.select_date(start_date, end_date)

    if anom:
        g.anomalise()

    g.data = X[:, 0].copy()

    if NUM_SURR != 0:
        g_surr = SurrogateField()
        seasonality = g.get_seasonality(True)
        g_surr.copy_field(g)

        g.return_seasonality(seasonality[0], seasonality[1], seasonality[2])
    else:
        g_surr, seasonality = None, None

    return g, g_surr, seasonality
Пример #7
0
            date(2009, 2, 8),
            anom=False,
            daily=DAILY)
        # temp, temp_surr, temp_seas = load_CR_climax_daily_data('../data/CR-climax-daily-1-1-94--30-11-06.txt', date(1994,1,1), date(2006,11,30), False)
        # temp.get_data_of_precise_length('16k', start_date = date(1964, 1, 1), COPY = True)
    elif idx1 == 'sunspot':
        temp = load_sunspot_data("../data/sunspot_daily.txt",
                                 date(1964, 4, 1),
                                 date(2009, 2, 8),
                                 anom=False,
                                 daily=DAILY)
        # temp.get_data_of_precise_length(length = 1024, end_date = date(2007, 1, 1), COPY = True)
        # temp.get_data_of_precise_length('16k', start_date = date(1964, 1, 1), COPY = True)
        temp_surr = SurrogateField()
        temp_seas = temp.get_seasonality(True)
        temp_surr.copy_field(temp)
        temp.return_seasonality(temp_seas[0], temp_seas[1], temp_seas[2])
    elif idx1 == 'AAindex':
        temp = load_AAgeomag_data("../data/aa_day.raw",
                                  date(1964, 4, 1),
                                  date(2009, 2, 8),
                                  anom=False,
                                  daily=DAILY)
        # temp.get_data_of_precise_length('16k', start_date = date(1964, 1, 1), COPY = True)
        temp_surr = SurrogateField()
        temp_seas = temp.get_seasonality(True)
        temp_surr.copy_field(temp)
        temp.return_seasonality(temp_seas[0], temp_seas[1], temp_seas[2])

    if idx2 == 'OuluCR':
        aa, aa_surr, aa_seas = load_cosmic_data(
Пример #8
0
     total_surrogates_condition = []
 if np.all(np.isnan(g_surrs.data) == False):
     # construct the job queue
     jobQ = Queue()
     resQ = Queue()
     if CONDITION:
         for i in range(3 * NUM_SURR):
             jobQ.put(1)
     else:
         for i in range(NUM_SURR):
             jobQ.put(1)
     for i in range(WORKERS):
         jobQ.put(None)
     a = g_surrs.get_seasonality(DETREND=True)
     sg = SurrogateField()
     sg.copy_field(g_surrs)
     if AMPLITUDE:
         a_amp = g_surrs_amp.get_seasonality(True)
         sg_amp = SurrogateField()
         sg_amp.copy_field(g_surrs_amp)
     else:
         sg_amp = None
         a_amp = None
     if SURR_TYPE == "AR":
         sg.prepare_AR_surrogates()
         if AMPLITUDE:
             sg_amp.prepare_AR_surrogates()
     workers = [
         Process(
             target=_cond_difference_surrogates,
             args=(sg, sg_amp, g_surrs, a, a_amp, start_cut, jobQ, resQ, ndx_season),
Пример #9
0
        # positive extremes
        g_e = np.greater_equal(tg_sat_temp,
                               np.mean(tg_avg_sat, axis=0) + 2 * sigma)
        avg_bins[i, 0] = np.sum(g_e)

        # negative extremes
        l_e = np.less_equal(tg_sat_temp,
                            np.mean(tg_avg_sat, axis=0) - 2 * sigma)
        avg_bins[i, 1] = np.sum(l_e)

else:
    sg = SurrogateField()
    # g_for_avg are SAT data
    mean, var, trend = g_for_avg.get_seasonality(detrend=True)
    sg.copy_field(g_for_avg)
    sg.prepare_AR_surrogates()
    year = 365.25
    k0 = 6.  # wavenumber of Morlet wavelet used in analysis
    fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + np.power(k0, 2)))
    period = PERIOD * year  # frequency of interest
    s0 = period / fourier_factor  # get scale

    avg_bins_surr = np.zeros(
        (NUM_SURR, 8,
         2))  # num surr x bin no. x result no. (hot / cold extremes)

    phase_bins = get_equidistant_bins()

    for surr in range(NUM_SURR):
        sg.construct_surrogates_with_residuals()
Пример #10
0
net = ScaleSpecificNetwork(
    fname,
    "air",
    date(1948, 1, 1),
    date(2016, 1, 1),
    [-60, 0],
    [40, 100],
    level=0,
    dataset="NCEP",
    sampling="monthly",
    anom=False,
)

surrs = SurrogateField()
a = net.get_seasonality(detrend=True)
surrs.copy_field(net)
net.return_seasonality(a[0], a[1], a[2])

pool = Pool(20)
net.wavelet(8, "y", cut=1, pool=pool)
net.get_adjacency_matrix(net.phase, method="MIEQQ", num_workers=0, pool=pool, use_queue=False)
pool.close()
pool.join()

data_adj_matrix = net.adjacency_matrix.copy()

surrs_adj_matrices = []

for i in range(NUM_SURR):
    print("surr %d/%d computing..." % (i + 1, NUM_SURR))
    pool = Pool(20)
Пример #11
0
    effect_windows = np.zeros((n_windows))
    mean_amp_windows = np.zeros((n_windows))
    mean_ampAAC_windows = np.zeros((n_windows))
    amp_windows_surrs = np.zeros((NUM_SURRS, n_windows))
    effect_windows_surrs = np.zeros((NUM_SURRS, n_windows))
    mean_amp_windows_surrs = np.zeros((NUM_SURRS, n_windows))
    mean_ampAAC_windows_surrs = np.zeros((NUM_SURRS, n_windows))

    for i, ndx in zip(range(len(ndxs)), ndxs):
        # copy part of data
        prg_temp = prg.copy(temporal_ndx = ndx)

        # get ready for surrs
        mean, var, trend = prg_temp.get_seasonality(detrend = True)
        prg_surr = SurrogateField()
        prg_surr.copy_field(prg_temp)
        prg_temp.return_seasonality(mean, var, trend)

        ## COMPUTE FOR DATA
        prg_temp.wavelet(1, 'y', cut = 1, cut_time = False, cut_data = False, regress_amp_to_data = True)
        annual_amp = prg_temp.amplitude.copy()
        annual_phase = prg_temp.phase.copy()

        prg_temp.anomalise()
        prg_temp.wavelet(8, 'y', cut = 1, cut_time = False, cut_data = False, regress_amp_to_data = True, continuous_phase = False)
        amplitude = prg_temp.amplitude.copy()
        prg_temp.wavelet(8, 'y', cut = 1, cut_time = True, cut_data = True, regress_amp_to_data = False, continuous_phase = False)
        amplitudeAACreg = prg_temp.amplitude.copy()

        m, c, r, p, std_err = sts.linregress(amplitudeAACreg*np.cos(prg_temp.phase), annual_amp*np.cos(annual_phase))
        amplitudeAACreg = m*amplitudeAACreg + c
Пример #12
0
        tg_sat_temp = tg_avg_sat[ndx].copy()
        
        # positive extremes
        g_e = np.greater_equal(tg_sat_temp, np.mean(tg_avg_sat, axis = 0) + 2 * sigma)
        avg_bins[i, 0] = np.sum(g_e)
        
        # negative extremes
        l_e = np.less_equal(tg_sat_temp, np.mean(tg_avg_sat, axis = 0) - 2 * sigma)
        avg_bins[i, 1] = np.sum(l_e)


else:
    sg = SurrogateField()
    # g_for_avg are SAT data
    mean, var, trend = g_for_avg.get_seasonality(detrend = True)
    sg.copy_field(g_for_avg)
    sg.prepare_AR_surrogates()
    year = 365.25
    k0 = 6. # wavenumber of Morlet wavelet used in analysis
    fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + np.power(k0,2)))
    period = PERIOD * year # frequency of interest
    s0 = period / fourier_factor # get scale
    
    avg_bins_surr = np.zeros((NUM_SURR, 8, 2)) # num surr x bin no. x result no. (hot / cold extremes)
    
    phase_bins = get_equidistant_bins()
    
    for surr in range(NUM_SURR):
        sg.construct_surrogates_with_residuals()
        sg.add_seasonality(mean[:-1], var[:-1], trend[:-1]) # so SAT data
        g_for_avg.data = sg.surr_data.copy()
Пример #13
0
# fname = '/home/nikola/Work/phd/data/air.mon.mean.sig995.nc'
fname = "/Users/nikola/work-ui/data/air.mon.mean.sig995.nc"

surrs = SurrogateField()

net = ScaleSpecificNetwork(fname,
                           'air',
                           date(1950, 1, 1),
                           date(2016, 1, 1),
                           None,
                           None,
                           None,
                           'monthly',
                           anom=False)
a = net.get_seasonality(detrend=True)
surrs.copy_field(net)
# surrs.construct_fourier_surrogates()
# surrs.add_seasonality(a[0], a[1], a[2])

for num in range(NUM_SURRS):
    pool = Pool(20)
    surrs.construct_fourier_surrogates(pool=pool)
    surrs.add_seasonality(a[0], a[1], a[2])

    net.data = surrs.get_surr()
    net.wavelet(1, 'y', pool=pool, cut=1)
    net.get_continuous_phase(pool=pool)
    print "wavelet done"
    net.get_phase_fluctuations(rewrite=True, pool=pool)
    print "fluctuations done"
    pool.close()
Пример #14
0
                            parts=3,
                            logger_function=log)

idx = g.get_data_of_precise_length(
    '16k', START_DATE, None, True)  # get 2^n data because of MF surrogates
if AMPLITUDE:
    g_amp = g_amp[idx[0]:idx[1], ...]
END_DATE = g.get_date_from_ndx(-1)

if SURR_TYPE is not None:
    log("Creating surrogate fields...")
    sg = SurrogateField()  # for MF and FT surrs
    log("De-seasonalising the data and copying to surrogate field...")
    mean, var, trend = g.get_seasonality(
        True)  # subtract mean, divide by std and subtract trend from data
    sg.copy_field(g)  # copy standartised data to SurrogateField
    g.return_seasonality(mean, var, trend)  # return seasonality to data
    log("Surrogate fields created.")

if ANOMALISE:
    g.anomalise()

## wavelet data
log("Running wavelet analysis on data using %d workers..." % (WORKERS))
k0 = 6.  # wavenumber of Morlet wavelet used in analysis
y = 365.25  # year in days
fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + np.power(k0, 2)))
period = PERIOD * y  # frequency of interest
s0 = period / fourier_factor  # get scale

phase_data = np.zeros_like(g.data)
Пример #15
0
data_diff = cond_means[:, 0, 0].max() - cond_means[:, 0, 0].min()


if SURR:
    surr_diff = np.zeros((NUM_SURR,))
    amp_surr = np.zeros((NUM_SURR,))
    surr_completed = 0
    jobQ = Queue()
    resQ = Queue()
    for i in range(NUM_SURR):
        jobQ.put(1)
    for i in range(WORKERS):
        jobQ.put(None)
    a = g_amp.get_seasonality(True)
    sg = SurrogateField()
    sg.copy_field(g_amp)
    phase_bins = get_equidistant_bins(BINS)
    workers = [Process(target = _reconstruction_surrs, args = (sg, a, jobQ, resQ, idx)) for iota in range(WORKERS)]
    for w in workers:
        w.start()

    while surr_completed < NUM_SURR:
        surr_means = resQ.get()
        surr_diff[surr_completed] = surr_means[0]
        amp_surr[surr_completed] = surr_means[1]

        surr_completed += 1

        if (surr_completed % 100) == 0:
            print("%d. surrogate done..." % surr_completed)
Пример #16
0

names = [['sunspot', 'AAindex'], ['sunspot', 'OuluCR'], ['OuluCR', 'AAindex']]

for [idx1, idx2] in names:
        if idx1 == 'OuluCR':
            temp, temp_surr, temp_seas = load_cosmic_data("../data/oulu_cosmic_daily.dat", date(1964, 4, 1), date(2009, 2, 8), anom = False, daily = DAILY)
            # temp, temp_surr, temp_seas = load_CR_climax_daily_data('../data/CR-climax-daily-1-1-94--30-11-06.txt', date(1994,1,1), date(2006,11,30), False)
            # temp.get_data_of_precise_length('16k', start_date = date(1964, 1, 1), COPY = True)
        elif idx1 == 'sunspot':
            temp = load_sunspot_data("../data/sunspot_daily.txt", date(1964, 4, 1), date(2009, 2, 8), anom = False, daily = DAILY)
            # temp.get_data_of_precise_length(length = 1024, end_date = date(2007, 1, 1), COPY = True)
            # temp.get_data_of_precise_length('16k', start_date = date(1964, 1, 1), COPY = True)
            temp_surr = SurrogateField()
            temp_seas = temp.get_seasonality(True)
            temp_surr.copy_field(temp)
            temp.return_seasonality(temp_seas[0], temp_seas[1], temp_seas[2])
        elif idx1 == 'AAindex':
            temp = load_AAgeomag_data("../data/aa_day.raw", date(1964, 4, 1), date(2009, 2, 8), anom = False, daily = DAILY)
            # temp.get_data_of_precise_length('16k', start_date = date(1964, 1, 1), COPY = True)
            temp_surr = SurrogateField()
            temp_seas = temp.get_seasonality(True)
            temp_surr.copy_field(temp)
            temp.return_seasonality(temp_seas[0], temp_seas[1], temp_seas[2])

        if idx2 == 'OuluCR':
            aa, aa_surr, aa_seas = load_cosmic_data("../data/oulu_cosmic_daily.dat", date(1964, 4, 1), date(2009, 2, 8), anom = False, daily = DAILY)
            # aa, aa_surr, aa_seas = load_CR_climax_daily_data('../data/CR-climax-daily-1-1-94--30-11-06.txt', date(1994,1,1), date(2006,11,30), False)
        elif idx2 == 'sunspot':
            aa = load_sunspot_data("../data/sunspot_daily.txt", date(1964, 4, 1), date(2009, 2, 8), anom = False, daily = DAILY)
            aa_surr = SurrogateField()
Пример #17
0
     total_surrogates_condition = []
 if np.all(np.isnan(g_surrs.data) == False):
     # construct the job queue
     jobQ = Queue()
     resQ = Queue()
     if CONDITION:
         for i in range(3 * NUM_SURR):
             jobQ.put(1)
     else:
         for i in range(NUM_SURR):
             jobQ.put(1)
     for i in range(WORKERS):
         jobQ.put(None)
     a = g_surrs.get_seasonality(DETREND=True)
     sg = SurrogateField()
     sg.copy_field(g_surrs)
     if AMPLITUDE:
         a_amp = g_surrs_amp.get_seasonality(True)
         sg_amp = SurrogateField()
         sg_amp.copy_field(g_surrs_amp)
     else:
         sg_amp = None
         a_amp = None
     if SURR_TYPE == 'AR':
         sg.prepare_AR_surrogates()
         if AMPLITUDE:
             sg_amp.prepare_AR_surrogates()
     workers = [
         Process(target=_cond_difference_surrogates,
                 args=(sg, sg_amp, g_surrs, a, a_amp, start_cut, jobQ,
                       resQ, ndx_season)) for iota in range(WORKERS)
Пример #18
0
# ERA-40 + ERA-Interim
else:
    g = load_ERA_data_daily('ERA40_EU', 't2m', date(1958,1,1), date(2004,1,1), LATS, LONS, False, 
                             parts = 3, logger_function = log)
                             
idx = g.get_data_of_precise_length('16k', START_DATE, None, True) # get 2^n data because of MF surrogates
if AMPLITUDE:
    g_amp = g_amp[idx[0] : idx[1], ...]
END_DATE = g.get_date_from_ndx(-1)

if SURR_TYPE is not None:
    log("Creating surrogate fields...")
    sg = SurrogateField() # for MF and FT surrs
    log("De-seasonalising the data and copying to surrogate field...")
    mean, var, trend = g.get_seasonality(True) # subtract mean, divide by std and subtract trend from data
    sg.copy_field(g) # copy standartised data to SurrogateField
    g.return_seasonality(mean, var, trend) # return seasonality to data
    log("Surrogate fields created.")

if ANOMALISE:
    g.anomalise()



## wavelet data
log("Running wavelet analysis on data using %d workers..." % (WORKERS))
k0 = 6. # wavenumber of Morlet wavelet used in analysis
y = 365.25 # year in days
fourier_factor = (4 * np.pi) / (k0 + np.sqrt(2 + np.power(k0,2)))
period = PERIOD * y # frequency of interest
s0 = period / fourier_factor # get scale