def optimization(infer, regularizer, rate_batch, learning_rate=0.001, reg=0.1, device="/cpu:0"): global_step = tf.train.get_global_step() assert global_step is not None with tf.device(device): cost_l2 = tf.nn.l2_loss(tf.subtract(infer, rate_batch)) penalty = tf.constant(reg, dtype=tf.float32, shape=[], name="l2") cost = tf.add(cost_l2, tf.multiply(regularizer, penalty)) train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost, global_step=global_step) return cost, train_op
def inference_svd(user_batch, item_batch, user_num, item_num, dim=5, device="/cpu:0"): with tf.device("/cpu:0"): bias_global = tf.get_variable("bias_global", shape=[]) w_bias_user = tf.get_variable("embd_bias_user", shape=[user_num]) w_bias_item = tf.get_variable("embd_bias_item", shape=[item_num]) # embedding_lookup 就是在w_bias_user 查找user_batch中表示的信息 bias_user = tf.nn.embedding_lookup(w_bias_user, user_batch, name="bias_user") bias_item = tf.nn.embedding_lookup(w_bias_item, item_batch, name="bias_item") w_user = tf.get_variable("embd_user", shape=[user_num, dim], initializer=tf.truncated_normal_initializer(stddev=0.02)) w_item = tf.get_variable("embd_item", shape=[item_num, dim], initializer=tf.truncated_normal_initializer(stddev=0.02)) embd_user = tf.nn.embedding_lookup(w_user, user_batch, name="embedding_user") embd_item = tf.nn.embedding_lookup(w_item, item_batch, name="embedding_item") with tf.device(device): infer = tf.reduce_sum(tf.multiply(embd_user, embd_item), 1) infer = tf.add(infer, bias_global) infer = tf.add(infer, bias_user) infer = tf.add(infer, bias_item, name="svd_inference") regularizer = tf.add(tf.nn.l2_loss(embd_user), tf.nn.l2_loss(embd_item), name="svd_regularizer") return infer, regularizer
from src import tensorflow as tf a = tf.placeholder(tf.int16) b = tf.placeholder(tf.int16) add = tf.add(a, b) mul = tf.multiply(a, b) with tf.Session() as sess: # Run every operation with variable input print("Addition with variables: %i" % sess.run(add, feed_dict={ a: 2, b: 3 })) print("Multiplication with variables: %i" % sess.run(mul, feed_dict={ a: 2, b: 3 })) # output: # Addition with variables: 5 # Multiplication with variables: 6 matrix1 = tf.constant([[3., 3.]]) matrix2 = tf.constant([[2.], [2.]]) product = tf.matmul(matrix1, matrix2) with tf.Session() as sess: result = sess.run(product) print(result) #result: # 12
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Create Model # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model activation = tf.add(tf.multiply(X, W), b) # Minimize the squared errors cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent # Initializing the variables init = tf.initialize_all_variables() # Launch the graph with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y):
embedding = { 'input': tf.Variable(tf.random_uniform([len(sku_dict) + 1, emb_size], -1.0, 1.0)) # 'output':tf.Variable(tf.random_uniform([len(label_dict)+1, emb_size], -1.0, 1.0)) } emb_mask = tf.placeholder(tf.float32, shape=[None, max_window_size, 1]) word_num = tf.placeholder(tf.float32, shape=[None, 1]) x_batch = tf.placeholder(tf.int32, shape=[None, max_window_size]) y_batch = tf.placeholder(tf.int64, [None, 1]) input_embedding = tf.nn.embedding_lookup(embedding['input'], x_batch) project_embedding = tf.div( tf.reduce_sum(tf.multiply(input_embedding, emb_mask), 1), word_num) # Construct model pred = multilayer_perceptron(project_embedding, weights, biases) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([n_classes, n_hidden_1], stddev=1.0 / math.sqrt(n_hidden_1))) nce_biases = tf.Variable(tf.zeros([n_classes])) loss = tf.reduce_mean( tf.nn.nce_loss(weights=nce_weights, biases=nce_biases, labels=y_batch, inputs=pred,