def __call__(self, img_path): kps = get_people(img_path) input_img, proc_param, img = preprocess_image(img_path, kps) # Add batch dimension: 1 x D x D x 3 input_img = np.expand_dims(input_img, 0) joints, verts, cams, joints3d, theta = self._model.predict( input_img, get_theta=True) # theta SMPL angles return self.kinematicTree(theta[0])
def main(img_path): sess = tf.Session() model = RunModel(config, sess=sess) kps = get_people(img_path) input_img, proc_param, img = preprocess_image(img_path, kps) # Add batch dimension: 1 x D x D x 3 input_img = np.expand_dims(input_img, 0) joints, verts, cams, joints3d, theta = model.predict(input_img, get_theta=True) print(joints3d.shape) p3d(joints3d, cams[0], proc_param)
def locate_person_and_crop(self, img_path): kps = get_people(img_path) img = io.imread(img_path) if img.shape[2] == 4: img = img[:, :, :3] scale, center = op_util.get_bbox_dict(kps) crop, proc_param = img_util.scale_and_crop(img, scale, center, 224) # Normalize image to [-1, 1] crop = 2 * ((crop / 255.) - 0.5) # Add batch dimension: 1 x D x D x 3 crop = np.expand_dims(crop, 0) return crop, proc_param, img
def main(img_path): sess = tf.Session() model = RunModel(config, sess=sess) kps = get_people(img_path) input_img, proc_param, img = preprocess_image(img_path, kps) # Add batch dimension: 1 x D x D x 3 input_img = np.expand_dims(input_img, 0) joints, verts, cams, joints3d, theta = model.predict(input_img, get_theta=True) theta = theta[0, 3:75] q = quaternion.from_rotation_vector(theta[3:6]) print(q) q = quaternion.from_rotation_vector(theta[6:9]) print(q) get_angles(joints3d, cams[0], proc_param)
def main(img_dir): sess = tf.Session() model = RunModel(config, sess=sess) print(img_dir) onlyfiles = [ f for f in os.listdir(img_dir) if os.path.isfile(os.path.join(img_dir, f)) ] for file in onlyfiles: img_path = os.path.join(img_dir, file) kps = get_people(img_path) input_img, proc_param, img = preprocess_image(img_path, kps) # Add batch dimension: 1 x D x D x 3 input_img = np.expand_dims(input_img, 0) joints, verts, cams, joints3d, theta = model.predict(input_img, get_theta=True) p3d(img, joints3d, joints[0], verts[0], cams[0], proc_param, file)