Пример #1
0
def main(args):
    logger.info('Using torch {}'.format(torch.__version__))
    cfg = CommonConfiguration.from_yaml(args.setting)
    logger.info('Loaded training setting file: {}'.format(args.setting))

    trainer = Trainer(cfg)
    logger.info('Started training...')
    trainer.start()
    logger.info('Finished training.')
Пример #2
0
 def _parser_dict(self):
     dictionary = CommonConfiguration.from_yaml(cfg.DATASET.DICTIONARY)
     return dictionary[cfg.DATASET.DICTIONARY_NAME]
Пример #3
0
                perf_log += "{:}: {:.4f}\n".format(k, v)
            perf_log += "------------------------------------\n"
            logger.info(perf_log)

        acc = performances['performance']

        return acc, perf_log


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Generic Pytorch-based Training Framework')
    parser.add_argument('--setting', default='conf/cityscapes_deeplabv3plus.yml', help='The path to the configuration file.')

    # distributed training parameters
    parser.add_argument("--local_rank", default=0, type=int)

    args = parser.parse_args()
    cfg = CommonConfiguration.from_yaml(args.setting)
    cfg.local_rank = args.local_rank

    if cfg.local_rank==0:
        logger.info('Loaded configuration file: {}'.format(args.setting))
        logger.info('Use gpu ids: {}'.format(cfg.GPU_IDS))

    trainer = Trainer(cfg)
    logger.info('Begin to training ...')
    trainer.run()

    if cfg.local_rank == 0:
        logger.info('finish!')
    torch.cuda.empty_cache()
Пример #4
0
 def _parser_dict(self):
     dictionary = CommonConfiguration.from_yaml(cfg.DATASET.DICTIONARY)
     return next(dictionary.items())[1]  ## return first