import torch from torch import nn import pretrainedmodels from torchvision import transforms from torch.utils.data import DataLoader from src.utils.misc import AttrDict from src.data.storms_dataset import get_storms_df, StormsDatasetRGBSequence, DATASET_MEAN, DATASET_STD from src.data.data_feeders import DataFeed MODEL_TYPE = 'L1A' MODEL_VERSION = 'C' TRAINING_VERSION = '2' # se_resnext101_32x4d_s03g10_v2 - B01n06 args = AttrDict({}) # Data args.update({ 'sequence_gap': 1, # hours }) # Model args.update({ 'basemodel_name': 'se_resnext101_32x4d', 'pretrained': 'imagenet', # 'imagenet' or 'imagenet+background' 'freeze_basemodel': False, # Indicate first layer to train, True for freeze all, False none 'reset_weights': False, }) # Transformations SIZE = 224
import torch from torch import nn import pretrainedmodels from torchvision import transforms from torch.utils.data import DataLoader from src.utils.misc import AttrDict from src.data.storms_dataset import get_storms_df, StormsDatasetSequence, DATASET_MEAN, DATASET_STD from src.data.data_feeders import DataFeed from src.pytorch.transformer import TransformerEncoder MODEL_TYPE = 'L1A' MODEL_VERSION = 'A' TRAINING_VERSION = '4' # vgg11_transformer_s24g05B - CS061tbn24g05r3 args = AttrDict({}) # Data args.update({ 'sequence_gap': 0.5, # hours 'sequence_length': 8 * 3, 'train_split_ratio': 0.40, }) # Train ALL args.update({ 'all_train_epochs': None, 'all_train_lr_step': None, }) # Model args.update({ 'basemodel_name': 'vgg11_bn',
import torch from torch import nn from torch.utils.data import DataLoader from torchvision import transforms from src.data.geodata_utils import get_data_dict, get_dataset_df from src.utils.misc import AttrDict from src.data.roof_dataset import RoofDataset from src.utils.image_transformations import trim from src.data.data_feeders import DataFeed MODEL_TYPE = 'L1A' MODEL_VERSION = 'C' TRAINING_VERSION = '06g' args = AttrDict({}) # Data args.update({ 'use_only_verified': True, # Whether to use only verified data to train the model 'add_location': False, 'train_split_ratio': 0.091, # Ratio split train/validation (if needed) 'random_split_seed': 999, # Random seed for splitting training set 'correct_train_samples': None, 'thershold_for_corrections': None, # None or float 'validate_with_corrected_labels': False, # Use original labels or corrected to validate }) # Model args.update({
from torch import nn import pretrainedmodels from torchvision import transforms from torch.utils.data import DataLoader from src.utils.misc import AttrDict from src.data.storms_dataset import get_storms_df, StormsDatasetSequence, DATASET_MEAN, DATASET_STD from src.data.data_feeders import DataFeed from src.pytorch.transformations import RandomRingMask, RandomCircleMask MODEL_TYPE = 'L1A' MODEL_VERSION = 'C' TRAINING_VERSION = '3' # se_resnext101_32x4d_s07g10 - C01 args = AttrDict({}) # Data args.update({ 'sequence_gap': 1, # hours 'sequence_length': 7, }) # Train ALL args.update({ 'all_train_epochs': None, 'all_train_lr_step': None, }) # Model args.update({ 'basemodel_name': 'se_resnext101_32x4d', 'pretrained': 'imagenet', # 'imagenet' or 'imagenet+background'
import torch from torch import nn from torch.utils.data import DataLoader from torchvision import transforms from src.data.geodata_utils import get_data_dict, get_dataset_df from src.utils.misc import AttrDict from src.data.roof_dataset import RoofDataset from src.utils.image_transformations import trim from src.data.data_feeders import DataFeed MODEL_TYPE = 'L1A' MODEL_VERSION = 'A' TRAINING_VERSION = '06' args = AttrDict({}) # Data args.update({ 'use_only_verified': True, # Whether to use only verified data to train the model 'train_split_ratio': 0.091, # Ratio split train/validation (if needed) 'random_split_seed': 999, # Random seed for splitting training set }) # Model args.update({ 'basemodel_name': 'dpn92', 'pretrained': 'imagenet+5k', # 'imagenet' or 'imagenet+background' or 'imagenet+5k' 'freeze_basemodel': False, # Indicate first layer to train, True for freeze all, False none