def _build_train(self):
        print("-" * 80)
        print("Build train graph")
        print(self.x_train)
        logits = self._model(self.x_train, is_training=True)
        """
        # CIFAR10 to chess modification
        log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=self.y_train
        )
        """
        print("@@@@@@@@@@@@@@@@@@@@@@@@")
        print(logits)
        print(self.y_train)
        print("@@@@@@@@@@@@@@@@@@@@@@@@")

        #log_probs = tf.keras.backend.categorical_crossentropy(target=logits, output=self.y_train, axis=1)
        log_probs = tf.keras.losses.MSE(logits, self.y_train)

        self.loss = tf.reduce_mean(log_probs)

        self.train_preds = tf.argmax(logits, axis=1)
        self.train_preds = tf.cast(self.train_preds, tf.float32)
        self.train_acc = tf.equal(self.train_preds, self.y_train)
        self.train_acc = tf.cast(self.train_acc, tf.int32)
        self.train_acc = tf.reduce_sum(self.train_acc)

        tf_variables = [
            var for var in tf.trainable_variables()
            if var.name.startswith(self.name)
        ]
        self.num_vars = count_model_params(tf_variables)
        print("Model has {} params".format(self.num_vars))

        self.global_step = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")
        self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
            self.loss,
            tf_variables,
            self.global_step,
            clip_mode=self.clip_mode,
            grad_bound=self.grad_bound,
            l2_reg=self.l2_reg,
            lr_init=self.lr_init,
            lr_dec_start=self.lr_dec_start,
            lr_dec_every=self.lr_dec_every,
            lr_dec_rate=self.lr_dec_rate,
            lr_cosine=self.lr_cosine,
            lr_max=self.lr_max,
            lr_min=self.lr_min,
            lr_T_0=self.lr_T_0,
            lr_T_mul=self.lr_T_mul,
            num_train_batches=self.num_train_batches,
            optim_algo=self.optim_algo,
            sync_replicas=self.sync_replicas,
            num_aggregate=self.num_aggregate,
            num_replicas=self.num_replicas,
        )
Пример #2
0
    def _build_train(self):
        print("-" * 80)
        print("Build train graph")
        logits = self._model(self.x_train, is_training=True)
        log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=self.y_train)
        self.loss = tf.reduce_mean(log_probs)

        #self._weight_transfer_loss()

        if self.use_aux_heads:
            log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.aux_logits, labels=self.y_train)
            self.aux_loss = tf.reduce_mean(log_probs)
            train_loss = self.loss + 0.4 * self.aux_loss
        else:
            train_loss = self.loss

        self.train_preds = tf.argmax(logits, axis=1)
        self.train_preds = tf.to_int32(self.train_preds)
        self.train_acc = tf.equal(self.train_preds, self.y_train)
        self.train_acc = tf.to_int32(self.train_acc)
        self.train_acc = tf.reduce_sum(self.train_acc)

        tf_variables = [
            var for var in tf.trainable_variables()
            if (var.name.startswith(self.name) and "aux_head" not in var.name)
        ]
        for var in tf_variables:
            print(var)
        #print ('tf_variables!!!!!!!!')
        #print (tf_variables)
        self.num_vars = count_model_params(tf_variables)
        print("Model has {0} params".format(self.num_vars))

        self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
            train_loss,
            tf_variables,
            self.global_step,
            clip_mode=self.clip_mode,
            grad_bound=self.grad_bound,
            l2_reg=self.l2_reg,
            lr_init=self.lr_init,
            lr_dec_start=self.lr_dec_start,
            lr_dec_every=self.lr_dec_every,
            lr_dec_rate=self.lr_dec_rate,
            lr_cosine=self.lr_cosine,
            lr_max=self.lr_max,
            lr_min=self.lr_min,
            lr_T_0=self.lr_T_0,
            lr_T_mul=self.lr_T_mul,
            num_train_batches=self.num_train_batches,
            optim_algo=self.optim_algo,
            sync_replicas=self.sync_replicas,
            num_aggregate=self.num_aggregate,
            num_replicas=self.num_replicas)
def main(_):
  print("-" * 80)
  if not os.path.isdir(FLAGS.output_dir):
    print("Path {0} does not exist. Creating.".format(FLAGS.output_dir))
    os.makedirs(FLAGS.output_dir)
  elif FLAGS.reset_output_dir:
    print("Path {0} exists. Remove and remake.".format(FLAGS.output_dir))
    shutil.rmtree(FLAGS.output_dir)
    os.makedirs(FLAGS.output_dir)

  print_user_flags()

  hparams = Hparams()
  images, labels = read_data(FLAGS.data_path)

  g = tf.Graph()
  with g.as_default():
    ops = get_ops(images, labels)

    # count model variables
    tf_variables = tf.trainable_variables()
    num_params = count_model_params(tf_variables)

    print("-" * 80)
    print("Starting session")
    config = tf.ConfigProto(allow_soft_placement=True)
    with tf.train.SingularMonitoredSession(
      config=config, checkpoint_dir=FLAGS.output_dir) as sess:

        # training loop
        print("-" * 80)
        print("Starting training")
        for step in range(1, hparams.train_steps + 1):
          sess.run(ops["train_op"])
          if step % FLAGS.log_every == 0:
            global_step, train_loss, valid_acc = sess.run([
              ops["global_step"],
              ops["train_loss"],
              ops["valid_acc"],
            ])
            log_string = ""
            log_string += "step={0:<6d}".format(step)
            log_string += " loss={0:<5.2f}".format(train_loss)
            log_string += " val_acc={0:<3d}/{1:<3d}".format(
              valid_acc, hparams.eval_batch_size)
            print(log_string)
            sys.stdout.flush()

        # final test
        print("-" * 80)
        print("Training done. Eval on TEST set")
        num_corrects = 0
        for _ in range(10000 // hparams.eval_batch_size):
          num_corrects += sess.run(ops["test_acc"])
        print("test_accuracy: {0:>5d}/10000".format(num_corrects))
Пример #4
0
    def _build_train(self):
        print("-" * 80)
        print("Build train graph")
        self.output, self.layers = output, layers = self._model(
            self.x_train, is_training=True)
        # update loss to SSE
        label_onehot = tf.cast(tf.one_hot(self.y_train, 10), tf.float32)
        with tf.name_scope('loss'):
            # TODO: change to reduce_mean?
            self.loss = 0.5 * tf.reduce_sum(tf.square(label_onehot - output))

        self.train_preds = tf.argmax(output, axis=1)
        self.train_preds = tf.to_int32(self.train_preds)
        self.train_acc = tf.equal(self.train_preds, self.y_train)
        self.train_acc = tf.to_int32(self.train_acc)
        self.train_acc = tf.reduce_sum(self.train_acc)

        tf_variables = [
            var for var in tf.trainable_variables()
            if var.name.startswith(self.name)
        ]
        self.num_vars = count_model_params(tf_variables)
        print("Model has {} params".format(self.num_vars))

        self.global_step = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")
        self.train_op, self.lr, self.grad_norm, self.grads, self.optimizer = get_train_ops(
            self.loss,
            tf_variables,
            self.global_step,
            clip_mode=self.clip_mode,
            grad_bound=self.grad_bound,
            l2_reg=self.l2_reg,
            lr_init=self.lr_init,
            lr_dec_start=self.lr_dec_start,
            lr_dec_every=self.lr_dec_every,
            lr_dec_rate=self.lr_dec_rate,
            lr_cosine=self.lr_cosine,
            lr_max=self.lr_max,
            lr_min=self.lr_min,
            lr_T_0=self.lr_T_0,
            lr_T_mul=self.lr_T_mul,
            num_train_batches=self.num_train_batches,
            optim_algo=self.optim_algo,
            sync_replicas=self.sync_replicas,
            num_aggregate=self.num_aggregate,
            num_replicas=self.num_replicas,
            bitsW=self.bitsW,
            bitsG=self.bitsG,
            is_child=True)
Пример #5
0
    def _build_train(self):
        print("Build train graph")
        all_h, self.train_reset = self._model(self.x_train, True, False)
        log_probs = self._get_log_probs(all_h,
                                        self.y_train,
                                        batch_size=self.batch_size,
                                        is_training=True)
        self.loss = tf.reduce_sum(log_probs) / tf.to_float(self.batch_size)
        self.train_ppl = tf.exp(tf.reduce_mean(log_probs))

        tf_variables = [
            var for var in tf.trainable_variables()
            if var.name.startswith(self.name)
        ]
        self.num_vars = count_model_params(tf_variables)
        print("-" * 80)
        print("Model has {} parameters".format(self.num_vars))

        loss = self.loss
        if self.rnn_l2_reg is not None:
            loss += (self.rnn_l2_reg * tf.reduce_sum(all_h**2) /
                     tf.to_float(self.batch_size))
        if self.rnn_slowness_reg is not None:
            loss += (self.rnn_slowness_reg * self.all_h_diff /
                     tf.to_float(self.batch_size))
        self.global_step = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")
        (self.train_op, self.lr, self.grad_norm, self.optimizer,
         self.grad_norms) = get_train_ops(
             loss,
             tf_variables,
             self.global_step,
             clip_mode=self.clip_mode,
             grad_bound=self.grad_bound,
             l2_reg=self.l2_reg,
             lr_warmup_val=self.lr_warmup_val,
             lr_warmup_steps=self.lr_warmup_steps,
             lr_init=self.lr_init,
             lr_dec_start=self.lr_dec_start,
             lr_dec_every=self.lr_dec_every,
             lr_dec_rate=self.lr_dec_rate,
             lr_dec_min=self.lr_dec_min,
             optim_algo=self.optim_algo,
             moving_average=self.optim_moving_average,
             sync_replicas=self.sync_replicas,
             num_aggregate=self.num_aggregate,
             num_replicas=self.num_replicas,
             get_grad_norms=True,
         )
Пример #6
0
  def _build_train(self):
    print("-" * 80)
    print("Build train graph")
    output = self._model(self.x_train, is_training=True)
    target = (self.y_train - 127) / 127
    self.loss = tf.reduce_mean(
      tf.losses.absolute_difference(target, output))
    train_loss = self.loss

    self.train_psnr = psnr(self.y_train, output)

    tf.summary.scalar('loss', self.loss)
    output = output * 127 + 127
    output = tf.clip_by_value(output, 0, 255)
    input_img = self.x_train*127 + 127
    bicubic_img = tf.image.resize_bicubic(input_img, [128, 128])
    tf.summary.image("output", tf.cast(output, tf.uint8))
    tf.summary.image("target", tf.cast(self.y_train, tf.uint8))
    tf.summary.image("input", tf.cast(input_img, tf.uint8))
    tf.summary.image("bicubic", tf.cast(bicubic_img, tf.uint8))

    tf_variables = [
      var for var in tf.trainable_variables() if (
        var.name.startswith(self.name) and "aux_head" not in var.name)]
    self.num_vars = count_model_params(tf_variables)
    print("Model has {0} params".format(self.num_vars))

    self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
      train_loss,
      tf_variables,
      self.global_step,
      clip_mode=self.clip_mode,
      grad_bound=self.grad_bound,
      l2_reg=self.l2_reg,
      lr_init=self.lr_init,
      lr_dec_start=self.lr_dec_start,
      lr_dec_every=self.lr_dec_every,
      lr_dec_rate=self.lr_dec_rate,
      lr_cosine=self.lr_cosine,
      lr_max=self.lr_max,
      lr_min=self.lr_min,
      lr_T_0=self.lr_T_0,
      lr_T_mul=self.lr_T_mul,
      num_train_batches=self.num_train_batches,
      optim_algo=self.optim_algo,
      sync_replicas=self.sync_replicas,
      num_aggregate=self.num_aggregate,
      num_replicas=self.num_replicas)

    tf.summary.scalar('lr', self.lr)
    self.summaries = tf.summary.merge_all()
Пример #7
0
    def _build_train(self):
        print("-" * 80)
        print("Build train graph")
        logits = self._model(self.x_train, is_training=True)
        log_probs = tf.nn.sigmoid_cross_entropy_with_logits(
            logits=logits, labels=self.y_train)
        self.loss = tf.reduce_mean(log_probs)

        outs = tf.nn.sigmoid(logits)
        self.train_preds = tf.greater_equal(outs, tf.constant(0.5))
        self.train_preds = tf.to_int32(self.train_preds)
        self.y_train = tf.to_int32(self.y_train)
        self.soft_acc_count = tf.count_nonzero(tf.equal(
            self.train_preds, self.y_train),
                                               axis=1)
        self.train_acc = tf.to_int32(tf.equal(self.soft_acc_count, 6))
        self.train_acc = tf.reduce_sum(self.train_acc)

        tf_variables = [
            var for var in tf.trainable_variables()
            if var.name.startswith(self.name)
        ]
        self.num_vars = count_model_params(tf_variables)
        print("Model has {} params".format(self.num_vars))

        self.global_step = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")
        self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
            self.loss,
            tf_variables,
            self.global_step,
            clip_mode=self.clip_mode,
            grad_bound=self.grad_bound,
            l2_reg=self.l2_reg,
            lr_init=self.lr_init,
            lr_dec_start=self.lr_dec_start,
            lr_dec_every=self.lr_dec_every,
            lr_dec_rate=self.lr_dec_rate,
            lr_cosine=self.lr_cosine,
            lr_max=self.lr_max,
            lr_min=self.lr_min,
            lr_T_0=self.lr_T_0,
            lr_T_mul=self.lr_T_mul,
            num_train_batches=self.num_train_batches,
            optim_algo=self.optim_algo,
            sync_replicas=self.sync_replicas,
            num_aggregate=self.num_aggregate,
            num_replicas=self.num_replicas)
Пример #8
0
    def _build_train(self):
        print("Build train graph")
        if self.use_model == "SRCNN":
            self.train_preds = self._model_srcnn(self.x_train, True)
        elif self.use_model == "RDN":
            self.train_preds = self._model_RDN(self.x_train, True)
        else:
            self.train_preds = self._model(self.x_train, True)
        self.loss = tf.losses.mean_squared_error(labels=self.y_train,
                                                 predictions=self.train_preds)

        tf_variables = [
            var for var in tf.trainable_variables()
            if var.name.startswith(self.name)
        ]
        self.num_vars = count_model_params(tf_variables)
        print("-" * 80)
        for var in tf_variables:
            print(var)

        self.global_step = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")
        self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
            self.loss,
            tf_variables,
            self.global_step,
            clip_mode=self.clip_mode,
            grad_bound=self.grad_bound,
            l2_reg=self.l2_reg,
            lr_init=self.lr_init,
            lr_dec_start=self.lr_dec_start,
            lr_warmup_steps=self.lr_warmup_steps,
            lr_warmup_val=self.lr_warmup_val,
            lr_dec_every=self.lr_dec_every,
            lr_dec_rate=self.lr_dec_rate,
            optim_algo=self.optim_algo
            # sync_replicas=self.sync_replicas,
            # num_aggregate=self.num_aggregate,
            # num_replicas=self.num_replicas
        )
Пример #9
0
    def _build_train(self):
        print "Build train graph"
        logits = self._model(self.x_train, True)
        log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(
            logits=logits, labels=self.y_train)
        self.loss = tf.reduce_mean(log_probs)

        self.train_preds = tf.argmax(logits, axis=1)
        self.train_preds = tf.to_int32(self.train_preds)
        self.train_acc = tf.equal(self.train_preds, self.y_train)
        self.train_acc = tf.to_int32(self.train_acc)
        self.train_acc = tf.reduce_sum(self.train_acc)

        tf_variables = [
            var for var in tf.trainable_variables()
            if var.name.startswith(self.name)
        ]
        self.num_vars = count_model_params(tf_variables)
        print "-" * 80
        for var in tf_variables:
            print var

        self.global_step = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")
        self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
            self.loss,
            tf_variables,
            self.global_step,
            clip_mode=self.clip_mode,
            grad_bound=self.grad_bound,
            l2_reg=self.l2_reg,
            lr_init=self.lr_init,
            lr_dec_start=self.lr_dec_start,
            lr_dec_every=self.lr_dec_every,
            lr_dec_rate=self.lr_dec_rate,
            optim_algo=self.optim_algo,
            sync_replicas=self.sync_replicas,
            num_aggregate=self.num_aggregate,
            num_replicas=self.num_replicas)
Пример #10
0
    def _model(self, images, is_training, reuse=False):
        """Compute the logits given the images."""

        if self.fixed_arc is None:
            is_training = True

        with tf.variable_scope(self.name, reuse=reuse):
            # the first two inputs
            with tf.variable_scope("stem_conv"):
                w = create_weight("w", [3, 3, 3, self.out_filters * 3])
                x = tf.nn.conv2d(images,
                                 w, [1, 1, 1, 1],
                                 "SAME",
                                 data_format=self.data_format)
                x = batch_norm(x, is_training, data_format=self.data_format)
            if self.data_format == "NHCW":
                split_axis = 3
            elif self.data_format == "NCHW":
                split_axis = 1
            else:
                raise ValueError("Unknown data_format '{0}'".format(
                    self.data_format))
            layers = [x, x]

            # building layers in the micro space
            out_filters = self.out_filters
            for layer_id in range(self.num_layers + 2):
                with tf.variable_scope("layer_{0}".format(layer_id)):
                    if layer_id not in self.pool_layers:
                        if self.fixed_arc is None:
                            x = self._enas_layer(layer_id, layers,
                                                 self.normal_arc, out_filters)
                        else:
                            x = self._fixed_layer(
                                layer_id,
                                layers,
                                self.normal_arc,
                                out_filters,
                                1,
                                is_training,
                                normal_or_reduction_cell="normal")
                    else:
                        out_filters *= 2
                        if self.fixed_arc is None:
                            x = self._factorized_reduction(
                                x, out_filters, 2, is_training)
                            layers = [layers[0], x]
                            x = self._enas_layer(layer_id, layers,
                                                 self.reduce_arc, out_filters)
                        else:
                            x = self._fixed_layer(
                                layer_id,
                                layers,
                                self.reduce_arc,
                                out_filters,
                                2,
                                is_training,
                                normal_or_reduction_cell="reduction")
                    print("Layer {0:>2d}: {1}".format(layer_id, x))
                    layers = [layers[-1], x]

                # auxiliary heads
                self.num_aux_vars = 0
                if (self.use_aux_heads and layer_id in self.aux_head_indices
                        and is_training):
                    print("Using aux_head at layer {0}".format(layer_id))
                    with tf.variable_scope("aux_head"):
                        aux_logits = tf.nn.relu(x)
                        aux_logits = tf.layers.average_pooling2d(
                            aux_logits, [5, 5], [3, 3],
                            "VALID",
                            data_format=self.actual_data_format)
                        with tf.variable_scope("proj"):
                            inp_c = self._get_C(aux_logits)
                            w = create_weight("w", [1, 1, inp_c, 128])
                            aux_logits = tf.nn.conv2d(
                                aux_logits,
                                w, [1, 1, 1, 1],
                                "SAME",
                                data_format=self.data_format)
                            aux_logits = batch_norm(
                                aux_logits,
                                is_training=True,
                                data_format=self.data_format)
                            aux_logits = tf.nn.relu(aux_logits)

                        with tf.variable_scope("avg_pool"):
                            inp_c = self._get_C(aux_logits)
                            hw = self._get_HW(aux_logits)
                            w = create_weight("w", [hw, hw, inp_c, 768])
                            aux_logits = tf.nn.conv2d(
                                aux_logits,
                                w, [1, 1, 1, 1],
                                "SAME",
                                data_format=self.data_format)
                            aux_logits = batch_norm(
                                aux_logits,
                                is_training=True,
                                data_format=self.data_format)
                            aux_logits = tf.nn.relu(aux_logits)

                        with tf.variable_scope("fc"):
                            aux_logits = global_avg_pool(
                                aux_logits, data_format=self.data_format)
                            inp_c = aux_logits.get_shape()[1].value
                            w = create_weight("w", [inp_c, 10])
                            aux_logits = tf.matmul(aux_logits, w)
                            self.aux_logits = aux_logits

                    aux_head_variables = [
                        var for var in tf.trainable_variables()
                        if (var.name.startswith(self.name)
                            and "aux_head" in var.name)
                    ]
                    self.num_aux_vars = count_model_params(aux_head_variables)
                    print("Aux head uses {0} params".format(self.num_aux_vars))

            x = tf.nn.relu(x)
            x = global_avg_pool(x, data_format=self.data_format)
            if is_training and self.keep_prob is not None and self.keep_prob < 1.0:
                x = tf.nn.dropout(x, self.keep_prob)
            with tf.variable_scope("fc"):
                inp_c = self._get_C(x)
                w = create_weight("w", [inp_c, 10])
                x = tf.matmul(x, w)
        return x