Пример #1
0
def detect(img_path, model_path):
    file_id = utils.get_file_id(img_path)
    img, img_raw, scale = read_img(img_path)
    head_detector = Head_Detector_VGG16(ratios=[1], anchor_scales=[2, 4])

    dict = torch.load(opt.caffe_pretrain_path)
    head_detector.load_state_dict(dict['model'])

    trainer = Head_Detector_Trainer(head_detector).cuda()
    trainer.load(model_path)
    img = at.totensor(img)
    img = img[None, :, :, :]
    img = img.cuda().float()
    st = time.time()
    pred_bboxes_, _ = head_detector.predict(img,
                                            scale,
                                            mode='evaluate',
                                            thresh=THRESH)
    et = time.time()
    tt = et - st
    print("[INFO] Head detection over. Time taken: {:.4f} s".format(tt))
    for i in range(pred_bboxes_.shape[0]):
        ymin, xmin, ymax, xmax = pred_bboxes_[i, :]
        utils.draw_bounding_box_on_image_array(img_raw, ymin, xmin, ymax, xmax)
    cv2.imshow('asdf', img_raw)
    cv2.waitKey()
def detect(img_path, model_path):
    file_id = utils.get_file_id(img_path)
    img, img_raw, scale = read_img(img_path)
    head_detector = Head_Detector_VGG16(ratios=[1], anchor_scales=[2, 4])
    trainer = Head_Detector_Trainer(head_detector).cuda()
    trainer.load(model_path)
    img = at.totensor(img)
    img = img[None, :, :, :]
    img = img.cuda().float()
    st = time.time()
    pred_bboxes_, _ = head_detector.predict(img,
                                            scale,
                                            mode='evaluate',
                                            thresh=THRESH)
    et = time.time()
    tt = et - st
    print("[INFO] Head detection over. Time taken: {:.4f} s".format(tt))
    for i in range(pred_bboxes_.shape[0]):
        ymin, xmin, ymax, xmax = pred_bboxes_[i, :]
        utils.draw_bounding_box_on_image_array(img_raw, ymin, xmin, ymax, xmax)
    plt.axis('off')
    plt.imshow(img_raw)
    if SAVE_FLAG == 1:
        plt.savefig(os.path.join(opt.test_output_path, file_id + '.png'),
                    bbox_inches='tight',
                    pad_inches=0)
    else:
        plt.show()
def detect(img_path, model_path):
    file_id = utils.get_file_id(img_path)
    img, img_raw, scale,scale_ = read_img(img_path)
    print("dim1",img_raw.ndim)
    head_detector = Head_Detector_VGG16(ratios=[1], anchor_scales=[2,4])
    trainer = Head_Detector_Trainer(head_detector).cuda()
    trainer.load(model_path)
    img = at.totensor(img)
    img = img[None, : ,: ,:]
    img = img.cuda().float()
    st = time.time()
    pred_bboxes_, _ = head_detector.predict(img, scale, mode='evaluate', thresh=THRESH)
    et = time.time()
    tt = et - st
    print ("[INFO] Head detection over. Time taken: {:.4f} s".format(tt))
    for i in range(pred_bboxes_.shape[0]):
        print(i)
        ymin, xmin, ymax, xmax = pred_bboxes_[i,:]
        print(ymin, xmin, ymax, xmax)
        image_raw=Image.fromarray(np.uint8(img_raw))
        utils.draw_bounding_box_on_image(image_raw,ymin*scale_, xmin*scale_, ymax*scale_, xmax*scale_)
        img_raw=np.array(image_raw)
    image_raw=Image.fromarray(np.uint8(img_raw))
    if SAVE_FLAG == 1:
       #image_raw.save('/home/hx/Project/FCHD-Fully-Convolutional-Head-Detector-master/'+file_id+'_1.png')
        image_raw.save(write_path+'/'+os.path.basename(img_path))
        frame_end = cv2.imread(write_path+'/'+os.path.basename(img_path))
        cv2.imshow("frame_end",frame_end)
        key_end = cv2.waitKey(1) & 0xFF
    else:
        image_raw.show()