def predict_contacts(model, x, y, use_cuda): b = len(x) x,order = pack_sequences(x) x = PackedSequence(Variable(x.data), x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) logits = [] y_list = [] for i in range(b): zi = z[i] lp = model.predict(zi.unsqueeze(0)).view(-1) yi = y[i].view(-1) if use_cuda: yi = yi.cuda() mask = (yi < 0) lp = lp[~mask] yi = yi[~mask] logits.append(lp) y_list.append(yi) return logits, y_list
def peptide_embedding(peptide_list, max_len, pretrained_model): #peptide_list = peptide_encoding(peptides) c = [torch.from_numpy(peptide).long() for peptide in peptide_list] c,order = pack_sequences(c) # Load trained full SSA model for structure-based protein embeddings features = pretrained_model # torch.load('pretrained_models/ssa_L1_100d_lstm3x512_lm_i512_mb64_tau0.5_lambda0.1_p0.05_epoch100.sav') #features.eval() z = features(c) z = unpack_sequences(z, order) # pad sequences to be of same sequnece length maxLength = max_len Embedding_List = [] for elem in z: diff = maxLength - elem.shape[0] elem = F.pad(elem, (0, 0, 0, diff), 'constant') Embedding_List.append(elem) # Embedding_List = [] # for embedding in z: # Embedding_List.append(embedding.detach().numpy()) return Embedding_List
def eval_similarity(model, test_iterator, use_cuda): y = [] logits = [] for x0,x1,y_mb in test_iterator: if use_cuda: y_mb = y_mb.cuda() y.append(y_mb.long()) b = len(x0) x = x0 + x1 x,order = pack_sequences(x) x = PackedSequence(Variable(x.data), x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) z0 = z[:b] z1 = z[b:] for i in range(b): z_a = z0[i] z_b = z1[i] logits.append(model.score(z_a, z_b)) y = torch.cat(y, 0) logits = torch.stack(logits, 0) p = F.sigmoid(logits).data ones = p.new(p.size(0),1).zero_() + 1 p_ge = torch.cat([ones, p], 1) p_lt = torch.cat([1-p, ones], 1) p = p_ge*p_lt p = p/p.sum(1,keepdim=True) # make sure p is normalized loss = F.cross_entropy(p, y).item() _,y_hard = torch.max(p, 1) levels = torch.arange(5).to(p.device) y_hat = torch.sum(p*levels, 1) accuracy = torch.mean((y == y_hard).float()).item() mse = torch.mean((y.float() - y_hat)**2).item() y = y.cpu().numpy() y_hat = y_hat.cpu().numpy() r,_ = pearsonr(y_hat, y) rho,_ = spearmanr(y_hat, y) return loss, accuracy, mse, r, rho
def predict_minibatch(model, x, use_cuda): b = len(x) x, order = pack_sequences(x) x = PackedSequence(x.data, x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) logits = [] for i in range(b): zi = z[i] lp = model.predict(zi.unsqueeze(0)).view(zi.size(0), zi.size(0)) logits.append(lp) return logits
def __call__(self, x): c = [torch.from_numpy(x_).long() for x_ in x] c, order = pack_sequences(c) if self.use_cuda: c = c.cuda() if self.full_features: z = featurize(c, self.lm_embed, self.lstm_stack, self.proj) else: z = self.model(c) # embed the sequences z = unpack_sequences(z, order) return z
def similarity_grad(model, x0, x1, y, use_cuda, weight=0.5): if use_cuda: y = y.cuda() y = Variable(y) b = len(x0) x = x0 + x1 x,order = pack_sequences(x) x = PackedSequence(Variable(x.data), x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) z0 = z[:b] z1 = z[b:] logits = [] for i in range(b): z_a = z0[i] z_b = z1[i] logits.append(model.score(z_a, z_b)) logits = torch.stack(logits, 0) loss = F.binary_cross_entropy_with_logits(logits, y.float()) # backprop weighted loss w_loss = loss*weight w_loss.backward() # calculate minibatch performance metrics with torch.no_grad(): p = F.sigmoid(logits) ones = p.new(b,1).zero_() + 1 p_ge = torch.cat([ones, p], 1) p_lt = torch.cat([1-p, ones], 1) p = p_ge*p_lt p = p/p.sum(1,keepdim=True) # make sure p is normalized _,y_hard = torch.max(p, 1) levels = torch.arange(5).to(p.device) y_hat = torch.sum(p*levels, 1) y = torch.sum(y.data, 1) loss = F.cross_entropy(p, y).item() # calculate cross entropy loss from p vector correct = torch.sum((y == y_hard).float()).item() mse = torch.mean((y.float() - y_hat)**2).item() return loss, correct, mse, b
def __call__(self, x, y): n = len(x) c = [torch.from_numpy(x_).long() for x_ in x] + [torch.from_numpy(y_).long() for y_ in y] c, order = pack_sequences(c) if self.use_cuda: c = c.cuda() with torch.no_grad(): z = self.model(c) # embed the sequences z = unpack_sequences(z, order) scores = np.zeros(n) if self.mode == 'align': for i in range(n): z_x = z[i] z_y = z[i + n] logits = self.model.score(z_x, z_y) p = F.sigmoid(logits).cpu() p_ge = torch.ones(p.size(0) + 1) p_ge[1:] = p p_lt = torch.ones(p.size(0) + 1) p_lt[:-1] = 1 - p p = p_ge * p_lt p = p / p.sum() # make sure p is normalized levels = torch.arange(5).float() scores[i] = torch.sum(p * levels).item() elif self.mode == 'coarse': z_x = z[:n] z_y = z[n:] z_x = torch.stack([z.mean(0) for z in z_x], 0) z_y = torch.stack([z.mean(0) for z in z_y], 0) scores[:] = -torch.sum(torch.abs(z_x - z_y), 1).cpu().numpy() return scores
def contacts_grad(model, x, y, use_cuda, weight=0.5): b = len(x) x,order = pack_sequences(x) x = PackedSequence(Variable(x.data), x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) logits = [] for i in range(b): zi = z[i] lp = model.predict(zi.unsqueeze(0)).view(-1) logits.append(lp) logits = torch.cat(logits, 0) y = torch.cat([yi.view(-1) for yi in y]) if use_cuda: y = y.cuda() mask = (y < 0) logits = logits[~mask] y = Variable(y[~mask]) b = y.size(0) loss = F.binary_cross_entropy_with_logits(logits, y) # backprop weighted loss w_loss = loss*weight w_loss.backward() # calculate the recall and precision with torch.no_grad(): p_hat = F.sigmoid(logits) tp = torch.sum(p_hat*y).item() gp = y.sum().item() pp = p_hat.sum().item() return loss.item(), tp, gp, pp, b
def main(): import argparse parser = argparse.ArgumentParser( 'Script for training embedding model on SCOP.') parser.add_argument('--dev', action='store_true', help='use train/dev split') parser.add_argument( '-m', '--model', choices=['ssa', 'ua', 'me'], default='ssa', help= 'alignment scoring method for comparing sequences in embedding space [ssa: soft symmetric alignment, ua: uniform alignment, me: mean embedding] (default: ssa)' ) parser.add_argument('--allow-insert', action='store_true', help='model insertions (default: false)') parser.add_argument('--norm', choices=['l1', 'l2'], default='l1', help='comparison norm (default: l1)') parser.add_argument('--rnn-type', choices=['lstm', 'gru'], default='lstm', help='type of RNN block to use (default: lstm)') parser.add_argument('--embedding-dim', type=int, default=100, help='embedding dimension (default: 100)') parser.add_argument('--input-dim', type=int, default=512, help='dimension of input to RNN (default: 512)') parser.add_argument('--rnn-dim', type=int, default=512, help='hidden units of RNNs (default: 512)') parser.add_argument('--num-layers', type=int, default=3, help='number of RNN layers (default: 3)') parser.add_argument('--dropout', type=float, default=0, help='dropout probability (default: 0)') parser.add_argument('--epoch-size', type=int, default=100000, help='number of examples per epoch (default: 100,000)') parser.add_argument('--epoch-scale', type=int, default=5, help='scaling on epoch size (default: 5)') parser.add_argument('--num-epochs', type=int, default=100, help='number of epochs (default: 100)') parser.add_argument('--batch-size', type=int, default=64, help='minibatch size (default: 64)') parser.add_argument('--weight-decay', type=float, default=0, help='L2 regularization (default: 0)') parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--tau', type=float, default=0.5, help='sampling proportion exponent (default: 0.5)') parser.add_argument( '--augment', type=float, default=0, help= 'probability of resampling amino acid for data augmentation (default: 0)' ) parser.add_argument('--lm', help='pretrained LM to use as initial embedding') parser.add_argument('-o', '--output', help='output file path (default: stdout)') parser.add_argument('--save-prefix', help='path prefix for saving models') parser.add_argument('-d', '--device', type=int, default=-2, help='compute device to use') args = parser.parse_args() prefix = args.output ## set the device d = args.device use_cuda = (d != -1) and torch.cuda.is_available() if d >= 0: torch.cuda.set_device(d) ## make the datasets astral_train_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.fa' astral_testpairs_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.test.sampledpairs.txt' if args.dev: astral_train_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.train.fa' astral_testpairs_path = 'data/SCOPe/astral-scopedom-seqres-gd-sel-gs-bib-95-2.06.train.dev.sampledpairs.txt' alphabet = Uniprot21() print('# loading training sequences:', astral_train_path, file=sys.stderr) with open(astral_train_path, 'rb') as f: names_train, structs_train, sequences_train = scop.parse_astral( f, encoder=alphabet) x_train = [torch.from_numpy(x).long() for x in sequences_train] if use_cuda: x_train = [x.cuda() for x in x_train] y_train = torch.from_numpy(structs_train) print('# loaded', len(x_train), 'training sequences', file=sys.stderr) print('# loading test sequence pairs:', astral_testpairs_path, file=sys.stderr) test_pairs_table = pd.read_csv(astral_testpairs_path, sep='\t') x0_test = [ x.encode('utf-8').upper() for x in test_pairs_table['sequence_A'] ] x0_test = [torch.from_numpy(alphabet.encode(x)).long() for x in x0_test] x1_test = [ x.encode('utf-8').upper() for x in test_pairs_table['sequence_B'] ] x1_test = [torch.from_numpy(alphabet.encode(x)).long() for x in x1_test] if use_cuda: x0_test = [x.cuda() for x in x0_test] x1_test = [x.cuda() for x in x1_test] y_test = test_pairs_table['similarity'].values y_test = torch.from_numpy(y_test).long() dataset_test = PairedDataset(x0_test, x1_test, y_test) print('# loaded', len(x0_test), 'test pairs', file=sys.stderr) ## make the dataset iterators scale = args.epoch_scale epoch_size = args.epoch_size batch_size = args.batch_size # precompute the similarity pairs y_train_levels = torch.cumprod( (y_train.unsqueeze(1) == y_train.unsqueeze(0)).long(), 2) # data augmentation by resampling amino acids augment = None p = 0 if args.augment > 0: p = args.augment trans = torch.ones(len(alphabet), len(alphabet)) trans = trans / trans.sum(1, keepdim=True) if use_cuda: trans = trans.cuda() augment = MultinomialResample(trans, p) print('# resampling amino acids with p:', p, file=sys.stderr) dataset_train = AllPairsDataset(x_train, y_train_levels, augment=augment) similarity = y_train_levels.numpy().sum(2) levels, counts = np.unique(similarity, return_counts=True) order = np.argsort(levels) levels = levels[order] counts = counts[order] print('#', levels, file=sys.stderr) print('#', counts / np.sum(counts), file=sys.stderr) weight = counts**0.5 print('#', weight / np.sum(weight), file=sys.stderr) weight = counts**0.33 print('#', weight / np.sum(weight), file=sys.stderr) weight = counts**0.25 print('#', weight / np.sum(weight), file=sys.stderr) tau = args.tau print('# using tau:', tau, file=sys.stderr) print('#', counts**tau / np.sum(counts**tau), file=sys.stderr) weights = counts**tau / counts weights = weights[similarity].ravel() #weights = np.ones(len(dataset_train)) sampler = torch.utils.data.sampler.WeightedRandomSampler( weights, epoch_size) # two training dataset iterators for sampling pairs of sequences for training train_iterator = torch.utils.data.DataLoader( dataset_train, batch_size=batch_size, sampler=sampler, collate_fn=collate_paired_sequences) test_iterator = torch.utils.data.DataLoader( dataset_test, batch_size=batch_size, collate_fn=collate_paired_sequences) ## initialize the model rnn_type = args.rnn_type rnn_dim = args.rnn_dim num_layers = args.num_layers embedding_size = args.embedding_dim input_dim = args.input_dim dropout = args.dropout allow_insert = args.allow_insert print('# initializing model with:', file=sys.stderr) print('# embedding_size:', embedding_size, file=sys.stderr) print('# input_dim:', input_dim, file=sys.stderr) print('# rnn_dim:', rnn_dim, file=sys.stderr) print('# num_layers:', num_layers, file=sys.stderr) print('# dropout:', dropout, file=sys.stderr) print('# allow_insert:', allow_insert, file=sys.stderr) compare_type = args.model print('# comparison method:', compare_type, file=sys.stderr) lm = None if args.lm is not None: lm = torch.load(args.lm) lm.eval() ## do not update the LM parameters for param in lm.parameters(): param.requires_grad = False print('# using LM:', args.lm, file=sys.stderr) if num_layers > 0: embedding = src.models.embedding.StackedRNN(len(alphabet), input_dim, rnn_dim, embedding_size, nlayers=num_layers, dropout=dropout, lm=lm) else: embedding = src.models.embedding.Linear(len(alphabet), input_dim, embedding_size, lm=lm) if args.norm == 'l1': norm = src.models.comparison.L1() print('# norm: l1', file=sys.stderr) elif args.norm == 'l2': norm = src.models.comparison.L2() print('# norm: l2', file=sys.stderr) model = src.models.comparison.OrdinalRegression( embedding, 5, align_method=compare_type, compare=norm, allow_insertions=allow_insert) if use_cuda: model.cuda() ## setup training parameters and optimizer num_epochs = args.num_epochs weight_decay = args.weight_decay lr = args.lr print('# training with Adam: lr={}, weight_decay={}'.format( lr, weight_decay), file=sys.stderr) params = [p for p in model.parameters() if p.requires_grad] optim = torch.optim.Adam(params, lr=lr, weight_decay=weight_decay) ## train the model print('# training model', file=sys.stderr) save_prefix = args.save_prefix output = args.output if output is None: output = sys.stdout else: output = open(output, 'w') digits = int(np.floor(np.log10(num_epochs))) + 1 line = '\t'.join(['epoch', 'split', 'loss', 'mse', 'accuracy', 'r', 'rho']) print(line, file=output) for epoch in range(num_epochs): # train epoch model.train() it = 0 n = 0 loss_estimate = 0 mse_estimate = 0 acc_estimate = 0 for x0, x1, y in train_iterator: # zip(train_iterator_0, train_iterator_1): if use_cuda: y = y.cuda() y = Variable(y) b = len(x0) x = x0 + x1 x, order = pack_sequences(x) x = PackedSequence(Variable(x.data), x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) z0 = z[:b] z1 = z[b:] logits = [] for i in range(b): z_a = z0[i] z_b = z1[i] logits.append(model.score(z_a, z_b)) logits = torch.stack(logits, 0) loss = F.binary_cross_entropy_with_logits(logits, y.float()) loss.backward() optim.step() optim.zero_grad() model.clip( ) # projected gradient for bounding ordinal regressionn parameters p = F.sigmoid(logits) ones = p.new(b, 1).zero_() + 1 p_ge = torch.cat([ones, p], 1) p_lt = torch.cat([1 - p, ones], 1) p = p_ge * p_lt p = p / p.sum(1, keepdim=True) # make sure p is normalized _, y_hard = torch.max(p, 1) levels = torch.arange(5).to(p.device) y_hat = torch.sum(p * levels, 1) y = torch.sum(y.data, 1) loss = F.cross_entropy( p, y) # calculate cross entropy loss from p vector correct = torch.sum((y == y_hard).float()) mse = torch.sum((y.float() - y_hat)**2) n += b delta = b * (loss.item() - loss_estimate) loss_estimate += delta / n delta = correct.item() - b * acc_estimate acc_estimate += delta / n delta = mse.item() - b * mse_estimate mse_estimate += delta / n if (n - b) // 100 < n // 100: print( '# [{}/{}] training {:.1%} loss={:.5f}, mse={:.5f}, acc={:.5f}' .format(epoch + 1, num_epochs, n / epoch_size, loss_estimate, mse_estimate, acc_estimate), end='\r', file=sys.stderr) print(' ' * 80, end='\r', file=sys.stderr) line = '\t'.join([ str(epoch + 1).zfill(digits), 'train', str(loss_estimate), str(mse_estimate), str(acc_estimate), '-', '-' ]) print(line, file=output) output.flush() # eval and save model model.eval() y = [] logits = [] with torch.no_grad(): for x0, x1, y_mb in test_iterator: if use_cuda: y_mb = y_mb.cuda() y.append(y_mb.long()) b = len(x0) x = x0 + x1 x, order = pack_sequences(x) x = PackedSequence(Variable(x.data), x.batch_sizes) z = model(x) # embed the sequences z = unpack_sequences(z, order) z0 = z[:b] z1 = z[b:] for i in range(b): z_a = z0[i] z_b = z1[i] logits.append(model.score(z_a, z_b)) y = torch.cat(y, 0) logits = torch.stack(logits, 0) p = F.sigmoid(logits).data ones = p.new(p.size(0), 1).zero_() + 1 p_ge = torch.cat([ones, p], 1) p_lt = torch.cat([1 - p, ones], 1) p = p_ge * p_lt p = p / p.sum(1, keepdim=True) # make sure p is normalized loss = F.cross_entropy(p, y).item() _, y_hard = torch.max(p, 1) levels = torch.arange(5).to(p.device) y_hat = torch.sum(p * levels, 1) accuracy = torch.mean((y == y_hard).float()).item() mse = torch.mean((y.float() - y_hat)**2).item() y = y.cpu().numpy() y_hat = y_hat.cpu().numpy() r, _ = pearsonr(y_hat, y) rho, _ = spearmanr(y_hat, y) line = '\t'.join([ str(epoch + 1).zfill(digits), 'test', str(loss), str(mse), str(accuracy), str(r), str(rho) ]) print(line, file=output) output.flush() # save the model if save_prefix is not None: save_path = save_prefix + '_epoch' + str(epoch + 1).zfill(digits) + '.sav' model.cpu() torch.save(model, save_path) if use_cuda: model.cuda()