def run_5_combos(dataset_name, df, model_dir, params: Bunch): runner = Runner(dataset_name, df, model_dir, params) make_clear_dir(model_dir) # exp_dir = make_sibling_dir(__file__, 'experiments') # exp = Experiment(name=dataset_name, debug=False, save_dir=exp_dir) # exp.tag(params) # natural training runner.train(params.mod(perturb_frac=0.0)) nat_nat = runner.eval(params.mod(perturb_frac=0.0)) nat_nat.update(train=0.0, test=0.0) # exp.log(nat_nat) printed_cols = list( set(nat_nat.keys()).difference( ['f_a_dict', 'f_g_dict', 'wts_dict', 'corrs_dict'])) print(pd.DataFrame([nat_nat])[printed_cols]) nat_per = runner.eval(params) nat_per.update(train=0.0, test=params.perturb_frac) # exp.log(nat_per) print(pd.DataFrame([nat_per])[printed_cols]) # adversarial training: Start with naturally trained classifier # for epochs/2, then train on adversarial inputs for remaining # epochs/2 make_clear_dir(model_dir) clean_train_epochs = int( params.get('clean_pre_train', 0.5) * params.epochs) dirty_train_epochs = params.epochs - clean_train_epochs if clean_train_epochs > 0: runner.train(params.mod(perturb_frac=0.0, epochs=clean_train_epochs)) runner.train(params.mod(epochs=dirty_train_epochs)) per_nat = runner.eval(params.mod(perturb_frac=0.0)) per_nat.update(train=params.perturb_frac, test=0.0) # exp.log(per_nat) print(pd.DataFrame([per_nat])[printed_cols]) per_per = runner.eval(params) per_per.update(train=params.perturb_frac, test=params.perturb_frac) # exp.log(per_per) print(pd.DataFrame([per_per])[printed_cols]) per_per_all = runner.eval(params.mod(perturb_frac=1.0)) per_per_all.update(train=params.perturb_frac, test=1.0) # exp.log(per_per_all) print(pd.DataFrame([per_per_all])[printed_cols]) all_results = dict(nat_nat=nat_nat, nat_per=nat_per, per_nat=per_nat, per_per=per_per, per_per_all=per_per_all) return all_results
def run_one(df: pd.DataFrame, params: Bunch, name='one'): ''' Only do a single train (nat or adv) and test (nat or adv) combo and return some metrics/values :param df: :param params: :return: ''' tf.set_random_seed(123) np.random.seed(123) model_dir = os.path.join('/tmp/robulin/exp', name) runner = Runner(name, df, model_dir, params) make_clear_dir(model_dir) # adversarial training: pre-train on nat examples for # some fraction of epochs, then on adversarial for remaining epochs clean_train_epochs = int( params.get('clean_pre_train', 0.5) * params.epochs) dirty_train_epochs = params.epochs - clean_train_epochs if clean_train_epochs > 0: runner.train(params.mod(perturb_frac=0.0, epochs=clean_train_epochs)) runner.train(params.mod(epochs=dirty_train_epochs)) result = runner.eval(params.mod(perturb_frac=params.test_perturb_frac)) result.update(train=params.perturb_frac, test=params.test_perturb_frac) few_fields = params.get('fields', [ 'train', 'test', 'loss', 'auc', 'acc', 'wts_ent', 'wts_l1', 'wts_l1_linf', 'wts_1pct', 'wts_pct1pct', 'av_ent', 'av_high', 'a_ent', 'g_ent', 'f_a_ent', 'f_g_ent' ]) result_few = sub_dict(result, few_fields) simple_keys = [ k for k, v in params.items() if type(v) in [int, float, str, bool] ] result_few.update(sub_dict(params, simple_keys)) print(result_few) result.update(sub_dict(params, simple_keys)) return result
def run_grid(params: Bunch): ''' Run a grid of experiments based on params.grid and return collated values/metrics in a data-frame :param params: :return: ''' if params.get('dataset'): df = fetch_data(params.dataset) else: df = gen_synth_df(params) grid_dict = params.grid params_list = list(ParameterGrid(grid_dict)) results = [] for p in params_list: result = run_one(df, params.mod(p), name=params.get('dataset', 'synth')) results += [result] results = pd.DataFrame(results) return results
def main(argv): args = parser.parse_args(argv[1:]) log_codes = dict(e=tf.logging.ERROR, i=tf.logging.INFO, w=tf.logging.WARN, d=tf.logging.DEBUG) params = Bunch(yaml.load(open(args.hparams))) tf.logging.set_verbosity( log_codes.get(params.log.lower()[0], tf.logging.ERROR)) if params.eager: tf.enable_eager_execution() print('******** TF EAGER MODE ENABLED ***************') timestr = time.strftime("%Y%m%d-%H%M%S") default_out_file_base = os.path.join( os.path.basename(args.hparams).split('.')[0], timestr) out_file_base = args.out or default_out_file_base results = run_grid(params) if not params.get('dataset'): # i.e if synthetic, not UCI/pmlb results['Wts_x_L1'] = results['wts_dict']. \ map(lambda w: np.sum(np.abs(np.array( list(sub_dict_prefix(w, 'x').values()))))) results['Wts_r_L1'] = results['wts_dict']. \ map(lambda w: np.sum(np.abs(np.array( list(sub_dict_prefix(w, 'r').values()))))) results['Wts_w_L1'] = results['wts_dict']. \ map(lambda w: np.sum(np.abs(np.array( list(sub_dict_prefix(w, 'w').values()))))) results_simple = results.drop(['wts_dict', 'f_g_dict', 'f_a_dict'], axis=1) results_dir = make_sibling_dir(__file__, 'results') results_simple_file = os.path.join(results_dir, out_file_base + '.csv') os.makedirs(os.path.dirname(results_simple_file), exist_ok=True) with open(results_simple_file, 'w+') as fd: results_simple.to_csv(fd, float_format='%.3f', index=False) pkl_file = os.path.join(results_dir, out_file_base + '.pkl') results.to_pickle(pkl_file) print(df_simple(results)) print(f'******** Summary csv written to {results_simple_file}') print(f'******** Pickled results dataframe at {pkl_file}')
def __init__(self, dataset_name, df: pd.DataFrame, model_dir: str, params: Bunch = None): self.col_spec, self.target_name = df_column_specs(df) self.segments = np.array([], dtype=np.int32) self.feature_value_names = [] for i, s in enumerate(self.col_spec): self.segments = np.append(self.segments, [np.repeat(i, s['card'])]) col_name = s['name'] if s['card'] == 1: self.feature_value_names += [col_name] else: self.feature_value_names += [ col_name + '=' + str(i) for i in range(s['card']) ] # prepend numeric to enforce lexicographic order so # we can recover the model weights from tensorflow's variables # in the right order df = df.copy(deep=True) df.columns = [c if c == self.target_name else f'{i:05d}_' + c \ for i, c in enumerate(df.columns)] self.feature_columns = tf_feature_columns(df) self.df_train, self.df_test = \ split_and_standardize(df, params.get('std', True)) dir = make_sibling_dir(__file__, f'datasets/{dataset_name}') self.train_file = f'{dir}/train.csv' self.test_file = f'{dir}/test.csv' with open(self.train_file, mode='w+') as fd: self.df_train.to_csv(fd, header=True, index=False) with open(self.test_file, mode='w+') as fd: self.df_test.to_csv(fd, header=True, index=False) self.model_dir = model_dir
def gen_synth_df(params: Bunch): N = params.get('N', 1000) nC = params.get('nc', 8) # number of features predictive of label nF = params.get('nr', 8) # how many features are random, uncorr with nW = params.get('nw', 0) # how many features weakly correlated with label corr1 = params.get('corrp', True) # whether predictive feats are corr corr = params.get('corr', False) # whether random feats are corr cat = params.get('cat', False) # whether the random features are categorical pred = params.get('pred', 0.7) # how often do the "predictive" features weak_pred = params.get('weak_pred', 1.0) # predictivity of weak feature np.random.seed(123) y = np.random.choice(2, N, p=[0.5, 0.5]) y1 = (2 * y - 1.0).reshape([-1, 1]) df_agree = pd.DataFrame() p = pred # probability of agreement with label if nC > 0: if corr1: # identical, i.e. highly correlated agree = np.repeat( np.array(np.random.choice(2, N, p=[1-p, p]), dtype=np.float32). \ reshape([-1,1]), nC, axis=1) else: # uncorrelated agree = np.array(np.random.choice(2, N * nC, p=[1-p, p]), dtype=np.float32). \ reshape([-1, nC]) agree = y1 * (2 * agree - 1) agree_cols = ['x' + str(i + 1) for i in range(nC)] df_agree = pd.DataFrame(agree, columns=agree_cols) # df_tar = pd.DataFrame(dict(target=y)) # rest are random df_rest = pd.DataFrame() if nF > 0: if cat: # 1 categorical feature with nF possible values rest = np.array(np.random.choice(nF, N), dtype=np.int64). \ reshape([-1,1]) else: if corr: # identical, i.e. highly correlated rest = np.repeat( np.array(np.random.choice(2, N, p=[0.5, 0.5]), dtype=np.float32). \ reshape([-1,1]), nF, axis=1) else: # uncorrelated, i.i.d -1/1 rest = np.array(np.random.choice(2, N * nF, p=[0.5, 0.5]), dtype=np.float32).reshape([-1, nF]) rest = 2 * rest - 1.0 rest_cols = ['r'] if cat else ['r' + str(i + 1) for i in range(nF)] df_rest = pd.DataFrame(rest, columns=rest_cols) df_weak = pd.DataFrame() if nW > 0: # normal, slightly correlated with label means = y1 * weak_pred / math.sqrt(nW) weak = np.repeat(np.random.normal(means, 1.0), nW, axis=1) weak_cols = ['w'] if cat else ['w' + str(i + 1) for i in range(nW)] df_weak = pd.DataFrame(weak, columns=weak_cols) df = pd.concat([df_agree, df_rest, df_weak, df_tar], axis=1) return df
def binary_classification_model(features, labels, mode, params: utils.Bunch): """Custom model; initially just linear (logistic or poisson) """ params = utils.Bunch(**params) optimizer = params.get('optimizer', 'ftrl') l1_reg = params.get('l1_reg', 0.0) l2_reg = params.get('l2_reg', 0.0) tf.set_random_seed(123) labels = tf.cast(labels, tf.float32) epsilon = params.perturb_norm_bound norm_order = params.get('perturb_norm_order', 2) train_perturb_frac = params.train_perturb_frac test_perturb_frac = params.test_perturb_frac # do the various feature transforms according to the # 'feature_column' param, so now we have the feature-vector # that we will do computations on. x = tf.feature_column.input_layer(features, params.feature_columns) # for units in params['hidden_units']: # net = tf.layers.dense(net, units=units, activation=tf.nn.relu) # Compute logits (1 per class). #logits = tf.layers.dense(net, params['n_classes'], activation=None) #logits = tf.layers.dense(net, 1, activation=None, name='dense') dense = tf.layers.Dense(1, activation=None, kernel_initializer=\ tf.keras.initializers.zeros(), #tf.keras.initializers.RandomNormal(seed=123), bias_initializer= \ tf.keras.initializers.zeros()) #tf.keras.initializers.RandomNormal(seed=123)) if len(dense.trainable_variables) == 0: dense(x) # to force the kernel initialization # this is the "kernel" i.e. weights, does not include bias coefs = dense.trainable_variables[0] bias = dense.trainable_variables[1][0] perturb_frac = train_perturb_frac if mode == tf.estimator.ModeKeys.TRAIN \ else test_perturb_frac x_perturbed, _ = RobustLogisticModel.perturb_continuous( x, labels, coefs, norm_bound=epsilon, norm_order=norm_order, perturb_frac=perturb_frac, seed=123) logits = dense(x_perturbed) if params.activation == 'sigmoid': predictions = tf.sigmoid(logits) elif params.activation == 'sign': predictions = tf.maximum(0.0, tf.sign(logits)) else: # assume relu predictions = tf.nn.relu(logits) labels = tf.reshape(labels, [-1, 1]) # Compute predictions. predicted_classes = tf.maximum(tf.sign(predictions - 0.5), 0) # if mode == tf.estimator.ModeKeys.PREDICT: # predictions = { # 'class_ids': predicted_classes[:, tf.newaxis], # 'probabilities': tf.nn.softmax(logits), # not really used # 'logits': logits, # } # return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Compute loss. if params.activation == 'sigmoid': loss = tf.reduce_mean( tf.keras.backend.binary_crossentropy(target=labels, output=logits, from_logits=True)) elif params.activation == 'sign': loss = tf.reduce_mean(-(2 * labels - 1) * logits) else: raise Exception(f'loss not known for activation {params.activation}') if l1_reg > 0 and optimizer != 'ftrl': loss = loss + l1_reg * tf.norm(coefs, ord=1) if l2_reg > 0 and optimizer != 'ftrl': loss = loss + l2_reg * tf.sqrt(tf.maximum(0.0, tf.nn.l2_loss(coefs))) adv_reg_lambda = params.get('adv_reg_lambda', 0.0) if adv_reg_lambda and perturb_frac > 0.0: clean_logits = dense(x) clean_loss = tf.reduce_mean( tf.keras.backend.binary_crossentropy(target=labels, output=clean_logits, from_logits=True)) loss = clean_loss + adv_reg_lambda * loss # Compute evaluation metrics. accuracy = tf.metrics.accuracy(labels=labels, predictions=predicted_classes, name='acc_op') auc = tf.metrics.auc(labels=labels, predictions=predictions, name='auc-op') # add metrics etc for tensorboard tf.summary.scalar('accuracy', accuracy[1]) tf.summary.scalar('auc', auc[1]) tf.summary.scalar('loss', loss) if mode == tf.estimator.ModeKeys.EVAL: # axiomatic attribution (Integrated Grads) feat_val_attribs = attribution.logistic_attribution(x, coefs, bias) feat_val_corr_stats = attribution.label_corr_stats(x, labels) av_attribs = tf.reduce_mean(feat_val_attribs, axis=0) attrib_entropy = tf_entropy(feat_val_attribs) num_high_attribs = num_above_relative_threshold(feat_val_attribs, thresh=params.get( 'thresh', 0.1)) av_attrib_entropy = tf.metrics.mean(attrib_entropy) av_high_attribs = tf.metrics.mean(num_high_attribs) mean_attribs = tf.metrics.mean_tensor(av_attribs, name='attrib') xy_av = tf.metrics.mean_tensor(feat_val_corr_stats.xy, name='xy_av') x_av = tf.metrics.mean_tensor(feat_val_corr_stats.x, name='x_av') y_av = tf.metrics.mean_tensor(feat_val_corr_stats.y, name='y_av') xsq_av = tf.metrics.mean_tensor(feat_val_corr_stats.xsq, name='xsq_av') ysq_av = tf.metrics.mean_tensor(feat_val_corr_stats.ysq, name='ysq_av') # ad-hoc attribution (AFVI) afvi = attribution.logistic_afvi(x, coefs, bias) mean_afvi = tf.metrics.mean_tensor(afvi, name='afvi') metrics = dict(accuracy=accuracy, auc=auc, attrib_ent=av_attrib_entropy, high_attribs=av_high_attribs, attrib=mean_attribs, afvi=mean_afvi, xy_av=xy_av, x_av=x_av, y_av=y_av, xsq_av=xsq_av, ysq_av=ysq_av) # the histograms don't work in eval mode?? tf.summary.histogram('attrib', mean_attribs[1]) tf.summary.histogram('afvi', mean_afvi[1]) return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=metrics) # Create training op. assert mode == tf.estimator.ModeKeys.TRAIN # if optimizer == 'adam': loss_optimizer = tf.train.AdamOptimizer(learning_rate=params.lr) elif optimizer == 'ftrl': loss_optimizer = tf.train.FtrlOptimizer( learning_rate=params.lr, l1_regularization_strength=l1_reg, l2_regularization_strength=l2_reg) elif optimizer == 'adagrad': loss_optimizer = tf.train.AdagradOptimizer(learning_rate=params.lr) elif optimizer == 'sgd': loss_optimizer = tf.train.GradientDescentOptimizer( learning_rate=params.lr) else: raise Exception(f"Unknown optimizer: {optimizer}") train_op = loss_optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
def plot_multi(df: pd.DataFrame, x_ids=None, var='type', value='value', include=None, ignore=None, order_by=None, ascending=False, title=None, rename=dict(), legend=True, threshold=0.001, kind='bar', show=True, tight=True, ax=None, params: Bunch = Bunch()): # rcParams.update({'figure.autolayout': True}) if rename: df = df.rename(columns=rename) if x_ids is None: df['__x'] = df.index x_ids = '__x' if order_by is not None: df = df.sort_values(by=order_by, ascending=ascending) if ignore: df = df.drop(ignore, axis=1) if include: df = df[include] plt.interactive(False) dfm = pd.melt(df, id_vars=x_ids, var_name=var, value_name=value) biggest = np.max(np.abs(dfm[value])) dfm = dfm[abs(dfm[value]) >= biggest * threshold] x_labels = df[x_ids].astype(str).tolist() x_labels = [x for x in x_labels if x in dfm[x_ids].astype(str).tolist()] max_x_label = max([len(s) for s in x_labels]) if kind == 'bar': g = sns.catplot(x=x_ids, y=value, hue=var, data=dfm, kind=kind, order=x_labels, row_order=x_labels, legend=False, legend_out=True, ax=ax) if params.get('xtick_font_size'): g.set_xticklabels(fontdict=dict(fontsize=params.xtick_font_size)) if max_x_label > 4: g.set_xticklabels(rotation=90) else: # line g = sns.lineplot(x=x_ids, y=value, hue=var, data=dfm, legend=False, ax=ax) #g.set_xticklabels(labels=x_labels) if title: plt.title(title) if tight: plt.tight_layout() if legend: plt.legend(loc='upper right', title=var) if show: plt.show() return g