Пример #1
0
 def calculate_local_north_and_up_in_celestial_coords(self, force_update):
     current_time = self.get_time_in_millis()
     diff = math.fabs(current_time - self.celestial_coords_last_updated)
     if (not force_update) and diff < self.MINIMUM_TIME_BETWEEN_CELESTIAL_COORD_UPDATES_MILLIS:
         return
     
     self.celestial_coords_last_updated = current_time
     self.update_magnetic_correction()
     up_ra, up_dec = Geometry.calculate_RADec_of_zenith(self.get_time(), self.location)
     self.up_celestial = get_instance(up_ra, up_dec)
     z = self.AXIS_OF_EARTHS_ROTATION
     z_dotu = Geometry.scalar_product(self.up_celestial, z)
     self.true_north_celestial = \
         Geometry.add_vectors(z, Geometry.scale_vector(self.up_celestial, -z_dotu))
     self.true_north_celestial.normalize()
     self.true_east_celestial = Geometry.vector_product(self.true_north_celestial, \
                                                        self.up_celestial)
     
     # Apply magnetic correction.  Rather than correct the phone's axes for
     # the magnetic declination, it's more efficient to rotate the
     # celestial axes by the same amount in the opposite direction.
     declination = self.magnetic_declination_calc.get_declination()
     rotation_matrix = Geometry.calculate_rotation_matrix(declination, self.up_celestial)
     magnetic_north_celestial = Geometry.matrix_vector_multiply(rotation_matrix, \
                                                                self.true_north_celestial)
     magnetic_east_celestial = Geometry.vector_product(magnetic_north_celestial, \
                                                       self.up_celestial)
     self.axes_magnetic_celestial_matrix = get_colmatrix_from_vectors(magnetic_north_celestial, \
                                                                      self.up_celestial, \
                                                                      magnetic_east_celestial)
Пример #2
0
    def calculate_local_north_and_up_in_phone_coords(self):
        down = self.acceleration.copy()
        down.normalize()
        # Magnetic field goes *from* North to South, so reverse it.
        magnetic_field_to_north = self.magnetic_field.copy()
        magnetic_field_to_north.scale(-1)
        magnetic_field_to_north.normalize()
        
        # This is the vector to magnetic North *along the ground*.
        v2 = Geometry.scale_vector(down, -Geometry.scalar_product(magnetic_field_to_north, \
                                                                  down))
        magnetic_north_phone = Geometry.add_vectors(magnetic_field_to_north, v2)
        magnetic_north_phone.normalize()
        up_phone = Geometry.scale_vector(down, -1)
        magnetic_east_phone = Geometry.vector_product(magnetic_north_phone, up_phone)

        # The matrix is orthogonal, so transpose it to find its inverse.
        # Easiest way to do that is to construct it from row vectors instead
        # of column vectors.        
        self.axes_phone_inverse_matrix = \
            get_rowmatrix_from_vectors(magnetic_north_phone, 
                                       up_phone, 
                                       magnetic_east_phone)