Пример #1
0
    def test_one_batch_history(self):
        composition = [[['aj'], ['bj']], [['bj'], ['cj']], [['cj'], ['aj']]]
        results = [[1, 0], [1, 0], [1, 0]]
        times = [1, 1, 1]
        priors = dict()
        for k in ["aj", "bj", "cj"]:
            priors[k] = ttt.Player(ttt.Gaussian(25., 25.0 / 3), 25.0 / 6,
                                   0.15 * 25.0 / 3)
        h1 = ttt.History(composition, results, times, priors)
        self.assertAlmostEqual(h1.batches[0].posterior("aj").mu, 22.904, 3)
        self.assertAlmostEqual(h1.batches[0].posterior("aj").sigma, 6.010, 3)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").mu, 25.110, 3)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").sigma, 5.866, 3)
        step, i = h1.convergence()
        self.assertAlmostEqual(h1.batches[0].posterior("aj").mu, 25.000, 3)
        self.assertAlmostEqual(h1.batches[0].posterior("aj").sigma, 5.419, 3)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").mu, 25.000, 3)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").sigma, 5.419, 3)

        priors = dict()
        for k in ["aj", "bj", "cj"]:
            priors[k] = ttt.Player(ttt.Gaussian(25., 25.0 / 3), 25.0 / 6,
                                   25.0 / 300)
        h2 = ttt.History(composition, results, [1, 2, 3], priors)
        self.assertAlmostEqual(h2.batches[2].posterior("aj").mu, 22.904, 3)
        self.assertAlmostEqual(h2.batches[2].posterior("aj").sigma, 6.011, 3)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").mu, 25.111, 3)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").sigma, 5.867, 3)
        step2, i2 = h2.convergence()
        self.assertAlmostEqual(h2.batches[2].posterior("aj").mu, 24.999, 3)
        self.assertAlmostEqual(h2.batches[2].posterior("aj").sigma, 5.420, 3)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").mu, 25.001, 3)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").sigma, 5.420, 3)
Пример #2
0
    def test_one_batch_history(self):
        composition = [[['aj'], ['bj']], [['bj'], ['cj']], [['cj'], ['aj']]]
        results = [[0, 1], [0, 1], [0, 1]]
        bache = [1, 1, 1]
        h1 = ttt.History(composition, results, bache)
        self.assertAlmostEqual(h1.batches[0].posterior("aj").mu, 22.904, 2)
        self.assertAlmostEqual(h1.batches[0].posterior("aj").sigma, 6.010, 2)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").mu, 25.110, 2)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").sigma, 5.866, 2)
        step, i = h1.convergence()
        self.assertAlmostEqual(h1.batches[0].posterior("aj").mu, 25.000, 2)
        self.assertAlmostEqual(h1.batches[0].posterior("aj").sigma, 5.419, 2)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").mu, 25.000, 2)
        self.assertAlmostEqual(h1.batches[0].posterior("cj").sigma, 5.419, 2)

        h2 = ttt.History(composition, results, [1, 2, 3])
        self.assertAlmostEqual(h2.batches[2].posterior("aj").mu, 22.904, 2)
        self.assertAlmostEqual(h2.batches[2].posterior("aj").sigma, 6.012, 2)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").mu, 25.110, 2)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").sigma, 5.867, 2)
        step2, i2 = h2.convergence()
        self.assertAlmostEqual(h2.batches[2].posterior("aj").mu, 24.997, 2)
        self.assertAlmostEqual(h2.batches[2].posterior("aj").sigma, 5.421, 2)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").mu, 25.000, 2)
        self.assertAlmostEqual(h2.batches[2].posterior("cj").sigma, 5.420, 2)
Пример #3
0
    def test_env_0_TTT(self):
        composition = [[["a"], ["b"]], [["a"], ["c"]], [["b"], ["c"]]]
        results = [[1, 0], [0, 1], [1, 0]]
        h = ttt.History(composition=composition,
                        results=results,
                        mu=0.0,
                        sigma=6.0,
                        beta=1.0,
                        gamma=0.05)
        step, i = h.convergence(iterations=100)
        self.assertAlmostEqual(h.batches[0].posterior("a").mu, 0.001, 3)
        self.assertAlmostEqual(h.batches[0].posterior("a").sigma, 2.395, 3)
        self.assertAlmostEqual(h.batches[0].posterior("b").mu, -0.001, 3)
        self.assertAlmostEqual(h.batches[0].posterior("b").sigma, 2.396, 3)
        self.assertAlmostEqual(h.batches[2].posterior("b").mu, 0.001, 3)
        self.assertAlmostEqual(h.batches[2].posterior("b").sigma, 2.396, 3)

        composition = [[["a"], ["b"]], [["c"], ["a"]], [["b"], ["c"]]]
        h = ttt.History(composition=composition,
                        mu=0.0,
                        sigma=6.0,
                        beta=1.0,
                        gamma=0.05)
        step, i = h.convergence(iterations=100)
        self.assertAlmostEqual(h.batches[0].posterior("a").mu, 0.001, 3)
        self.assertAlmostEqual(h.batches[0].posterior("a").sigma, 2.395, 3)
        self.assertAlmostEqual(h.batches[0].posterior("b").mu, -0.001, 3)
        self.assertAlmostEqual(h.batches[0].posterior("b").sigma, 2.396, 3)
        self.assertAlmostEqual(h.batches[2].posterior("b").mu, 0.001, 3)
        self.assertAlmostEqual(h.batches[2].posterior("b").sigma, 2.396, 3)
Пример #4
0
    def test_teams(self):
        composition = [[["a", "b"], ["c", "d"]], [["e", "f"], ["b", "c"]],
                       [["a", "d"], ["e", "f"]]]
        results = [[1, 0], [0, 1], [1, 0]]
        h = ttt.History(composition=composition,
                        results=results,
                        mu=0.0,
                        sigma=6.0,
                        beta=1.0,
                        gamma=0.0)
        step, i = h.convergence()
        self.assertAlmostEqual(h.batches[0].posterior("a").mu,
                               h.batches[0].posterior("b").mu, 3)
        self.assertAlmostEqual(h.batches[0].posterior("a").sigma,
                               h.batches[0].posterior("b").sigma, 3)
        self.assertAlmostEqual(h.batches[0].posterior("c").mu,
                               h.batches[0].posterior("d").mu, 3)
        self.assertAlmostEqual(h.batches[0].posterior("c").sigma,
                               h.batches[0].posterior("d").sigma, 3)
        self.assertAlmostEqual(h.batches[1].posterior("e").mu,
                               h.batches[1].posterior("f").mu, 3)
        self.assertAlmostEqual(h.batches[1].posterior("e").sigma,
                               h.batches[1].posterior("f").sigma, 3)

        self.assertAlmostEqual(h.batches[0].posterior("a").mu, 4.085, 3)
        self.assertAlmostEqual(h.batches[0].posterior("a").sigma, 5.107, 3)
        self.assertAlmostEqual(h.batches[0].posterior("c").mu, -0.533, 3)
        self.assertAlmostEqual(h.batches[0].posterior("c").sigma, 5.107, 3)
        self.assertAlmostEqual(h.batches[2].posterior("e").mu, -3.552, 3)
        self.assertAlmostEqual(h.batches[2].posterior("e").sigma, 5.155, 3)
Пример #5
0
    def gamma(self):
        composition = [[["a"], ["b"]], [["a"], ["b"]]]
        results = [[1, 0], [1, 0]]

        h = ttt.History(composition=composition,
                        results=results,
                        mu=0.0,
                        sigma=6.0,
                        beta=1.0,
                        gamma=0.0)
        mu0, sigma0 = h.batches[1].skills['a'].forward
        self.assertAlmostEqual(mu0, 3.33907896)
        self.assertAlmostEqual(sigma0, 4.98503276)

        h = ttt.History(composition=composition,
                        results=results,
                        mu=0.0,
                        sigma=6.0,
                        beta=1.0,
                        gamma=10.0)
        mu10, sigma10 = h.batches[1].skills['a'].forward
        self.assertAlmostEqual(mu10, 3.33907896)
        self.assertAlmostEqual(sigma10, 11.1736543)

        #Observaci'on:
        #   El paquete trueskill python agrega gamma antes de la partida
        #   devuelve, trueskill.Player(mu=6.555, sigma=9.645)

        h = ttt.History(composition=composition,
                        results=results,
                        mu=0.0,
                        sigma=math.sqrt(6.0**2 + 10**2),
                        beta=1.0,
                        gamma=10.0)
        mu100, sigma100 = h.batches[0].posterior("a")
        self.assertAlmostEqual(mu100, 6.555467)
        self.assertAlmostEqual(sigma100, 9.6449906)
Пример #6
0
 def test_trueSkill_Through_Time(self):
     events = [[["a"], ["b"]], [["a"], ["c"]], [["b"], ["c"]]]
     results = [[0, 1], [1, 0], [0, 1]]
     h = ttt.History(events, results, [1, 2, 3])
     h.batches[0].posteriors()
     step, i = h.convergence()
     self.assertAlmostEqual(h.batches[0].posterior("a").mu, 25.0002673, 5)
     self.assertAlmostEqual(h.batches[0].posterior("a").sigma, 5.41950697,
                            5)
     self.assertAlmostEqual(h.batches[0].posterior("b").mu, 24.9986633, 5)
     self.assertAlmostEqual(h.batches[0].posterior("b").sigma, 5.41968377,
                            5)
     self.assertAlmostEqual(h.batches[2].posterior("b").mu, 25.0029304, 5)
     self.assertAlmostEqual(h.batches[2].posterior("b").sigma, 5.42076739,
                            5)
Пример #7
0
 def test_learning_curve(self):
     composition = [[['aj'], ['bj']], [['bj'], ['cj']], [['cj'], ['aj']]]
     results = [[0, 1], [0, 1], [0, 1]]
     h = ttt.History(composition, results, [5, 6, 7])
     h.convergence()
     lc = h.learning_curves()
     for a in lc:
         self.assertEqual(
             all(lc[a][i][0] < lc[a][i + 1][0]
                 for i in range(len(lc[a]) - 1)), True)
     self.assertEqual(lc["aj"][0][0], 5)
     self.assertEqual(lc["aj"][-1][0], 7)
     self.assertAlmostEqual(lc["aj"][-1][1].mu, 24.997, 2)
     self.assertAlmostEqual(lc["aj"][-1][1].sigma, 5.421, 2)
     self.assertAlmostEqual(lc["cj"][-1][1].mu, 25.000, 2)
     self.assertAlmostEqual(lc["cj"][-1][1].sigma, 5.420, 2)
Пример #8
0
 def test_learning_curve(self):
     composition = [[["aj"], ["bj"]], [["bj"], ["cj"]], [["cj"], ["aj"]]]
     results = [[1, 0], [1, 0], [1, 0]]
     priors = dict()
     for k in ["aj", "bj", "cj"]:
         priors[k] = ttt.Player(ttt.Gaussian(25., 25.0 / 3), 25.0 / 6,
                                25.0 / 300)
     h = ttt.History(composition, results, [5, 6, 7], priors)
     h.convergence()
     lc = h.learning_curves()
     self.assertEqual(lc["aj"][0][0], 5)
     self.assertEqual(lc["aj"][-1][0], 7)
     self.assertAlmostEqual(lc["aj"][-1][1].mu, 24.999, 3)
     self.assertAlmostEqual(lc["aj"][-1][1].sigma, 5.420, 3)
     self.assertAlmostEqual(lc["cj"][-1][1].mu, 25.001, 3)
     self.assertAlmostEqual(lc["cj"][-1][1].sigma, 5.420, 3)
Пример #9
0
    def test_memory_Size(self):
        def summarysize(obj):
            import sys
            from types import ModuleType, FunctionType
            from gc import get_referents
            BLACKLIST = type, ModuleType, FunctionType
            if isinstance(obj, BLACKLIST):
                raise TypeError('getsize() does not take argument of type: ' +
                                str(type(obj)))
            seen_ids = set()
            size = 0
            objects = [obj]
            while objects:
                need_referents = []
                for obj in objects:
                    if not isinstance(obj,
                                      BLACKLIST) and id(obj) not in seen_ids:
                        seen_ids.add(id(obj))
                        size += sys.getsizeof(obj)
                        need_referents.append(obj)
                objects = get_referents(*need_referents)
            return size

        composition = [[["a"], ["b"]], [["a"], ["c"]], [["b"], ["c"]]]
        results = [[1, 0], [0, 1], [1, 0]]
        h = ttt.History(composition=composition,
                        results=results,
                        times=[0, 10, 20],
                        mu=0.0,
                        sigma=6.0,
                        beta=1.0,
                        gamma=0.05)
        self.assertEqual(summarysize(h) < 13000, True)
        self.assertEqual(
            summarysize(h.batches) - summarysize(h.agents) < 10000, True)
        self.assertEqual(summarysize(h.agents) < 3000, True)
        self.assertEqual(
            summarysize(h.batches[1]) - summarysize(h.agents) < 3500, True)
        self.assertEqual(summarysize(h) < summarysize(composition) * 15, True)
        self.assertEqual(summarysize(h.batches[0].skills) < 1650, True)
        self.assertEqual(summarysize(h.batches[0].events) < 1850, True)
Пример #10
0
    def test_history_init(self):
        events = [[["a"], ["b"]], [["a"], ["c"]], [["b"], ["c"]]]
        results = [[0, 1], [1, 0], [0, 1]]
        h = ttt.History(events, results, [1, 2, 3])

        self.assertEqual(
            not ttt.gr_tuple(h.batches[1].max_step, 1e-6)
            and not ttt.gr_tuple(h.batches[1].max_step, 1e-6), True)
        p0 = h.batches[0].posteriors()
        self.assertAlmostEqual(p0["a"].mu, 29.205, 3)
        self.assertAlmostEqual(p0["a"].sigma, 7.19448, 3)
        observed = h.batches[1].prior_forward["a"].N.sigma
        expected = math.sqrt((ttt.GAMMA * 1)**2 +
                             h.batches[0].posterior("a").sigma**2)
        self.assertAlmostEqual(observed, expected)
        observed = h.batches[1].posterior("a")
        g = ttt.Game([[h.batches[1].prior_forward["a"]],
                      [h.batches[1].prior_forward["c"]]], [1, 0])
        [expected], [c] = g.posteriors
        self.assertAlmostEqual(observed.mu, expected.mu, 3)
        self.assertAlmostEqual(observed.sigma, expected.sigma, 3)
Пример #11
0
    def test_trueSkill_Through_Time(self):
        composition = [[["a"], ["b"]], [["a"], ["c"]], [["b"], ["c"]]]
        results = [[1, 0], [0, 1], [1, 0]]
        priors = dict()
        for k in ["a", "b", "c"]:
            priors[k] = ttt.Player(ttt.Gaussian(25., 25.0 / 3), 25.0 / 6,
                                   25.0 / 300)
        h = ttt.History(composition, results, [], priors)
        step, i = h.convergence()
        self.assertEqual(h.batches[2].skills["b"].elapsed, 1)
        self.assertEqual(h.batches[2].skills["c"].elapsed, 1)

        self.assertAlmostEqual(h.batches[0].posterior("a").mu, 25.0002673, 5)
        self.assertAlmostEqual(h.batches[0].posterior("a").sigma, 5.41938162,
                               5)
        self.assertAlmostEqual(h.batches[0].posterior("b").mu, 24.999465, 5)
        self.assertAlmostEqual(h.batches[0].posterior("b").sigma, 5.419425831,
                               5)
        self.assertAlmostEqual(h.batches[2].posterior("b").mu, 25.00053219, 5)
        self.assertAlmostEqual(h.batches[2].posterior("b").sigma, 5.419696790,
                               5)
Пример #12
0
 def test_sigma_beta_0(self):
     composition = [[["a", "a_b", "b"], ["c", "c_d", "d"]],
                    [["e", "e_f", "f"], ["b", "b_c", "c"]],
                    [["a", "a_d", "d"], ["e", "e_f", "f"]]]
     results = [[1, 0], [0, 1], [1, 0]]
     priors = dict()
     for k in ["a_b", "c_d", "e_f", "b_c", "a_d", "e_f"]:
         priors[k] = ttt.Player(ttt.Gaussian(mu=0.0, sigma=1e-7),
                                beta=0.0,
                                gamma=0.2)
     h = ttt.History(composition=composition,
                     results=results,
                     priors=priors,
                     mu=0.0,
                     sigma=6.0,
                     beta=1.0,
                     gamma=0.0)
     step, i = h.convergence()
     self.assertAlmostEqual(h.batches[0].posterior("a_b").mu, 0.0, 4)
     self.assertAlmostEqual(h.batches[0].posterior("a_b").sigma, 0.0, 4)
     self.assertAlmostEqual(h.batches[2].posterior("e_f").mu, -0.002, 4)
     self.assertAlmostEqual(h.batches[2].posterior("e_f").sigma, 0.2, 4)
Пример #13
0
    def test_env_TTT(self):
        composition = [[["a"], ["b"]], [["a"], ["c"]], [["b"], ["c"]]]
        results = [[1, 0], [0, 1], [1, 0]]

        h = ttt.History(composition=composition,
                        results=results,
                        mu=25.,
                        sigma=25.0 / 3,
                        beta=25.0 / 6,
                        gamma=25.0 / 300)
        step, i = h.convergence()
        self.assertEqual(h.batches[2].skills["b"].elapsed, 1)
        self.assertEqual(h.batches[2].skills["c"].elapsed, 1)
        self.assertAlmostEqual(h.batches[0].posterior("a").mu, 25.0002673, 5)
        self.assertAlmostEqual(h.batches[0].posterior("a").sigma, 5.41938162,
                               5)
        self.assertAlmostEqual(h.batches[0].posterior("b").mu, 24.999465, 5)
        self.assertAlmostEqual(h.batches[0].posterior("b").sigma, 5.419425831,
                               5)
        self.assertAlmostEqual(h.batches[2].posterior("b").mu, 25.00053219, 5)
        self.assertAlmostEqual(h.batches[2].posterior("b").sigma, 5.419696790,
                               5)
Пример #14
0
    def test_history_init(self):
        composition = [[["aa"], ["b"]], [["aa"], ["c"]], [["b"], ["c"]]]
        results = [[1, 0], [0, 1], [1, 0]]
        priors = dict()
        for k in ["aa", "b", "c"]:
            priors[k] = ttt.Player(ttt.Gaussian(25., 25.0 / 3), 25.0 / 6,
                                   0.15 * 25.0 / 3)

        h = ttt.History(composition, results, [1, 2, 3], priors)

        p0 = h.batches[0].posteriors()
        self.assertAlmostEqual(p0["aa"].mu, 29.205, 3)
        self.assertAlmostEqual(p0["aa"].sigma, 7.19448, 3)
        observed = h.batches[1].skills["aa"].forward.sigma
        gamma = 0.15 * 25.0 / 3
        expected = math.sqrt((gamma * 1)**2 +
                             h.batches[0].posterior("aa").sigma**2)
        self.assertAlmostEqual(observed, expected)
        observed = h.batches[1].posterior("aa")
        [expected], [c] = ttt.Game(h.batches[1].within_priors(0),
                                   [0, 1]).posteriors()
        self.assertAlmostEqual(observed.mu, expected.mu, 3)
        self.assertAlmostEqual(observed.sigma, expected.sigma, 3)
Пример #15
0
               for w, b, h, s in zip(df.white, df.black, df.handicap, df.width)
               ]
batch = list(df.date)
count = 0
for i in range(len(batch) - 1):
    if batch[i] == batch[i + 1]:
        batch[i] = count
    else:
        batch[i] = count
        count += 1
batch[-1] = count
print("Composicion: ", composition[:5])
print("Resultado: ", results[:5])
print(" ")
print('Starting TrueSkill')
historyM = thM.History(composition, results, batch)
#print('TrueSkill', historyM.batches[0].posteriors())
pickle_file = open('./trueSkill.pickle', 'wb')
print('Saving TrueSkill data')
pickle.dump(historyM.learning_curves(), pickle_file)
pickle_file.close()
print('Saving evidence')
evidence = {}
for i in range(len(historyM.batches)):
    evidence[i] = historyM.batches[i].evidences

evidence_file = open('./trueSkillEvidence.pickle', 'wb')
pickle.dump(evidence, evidence_file)
evidence_file.close()
print('Done!, starting TTT converge')
step, i = historyM.convergence()
Пример #16
0
from importlib import reload

reload(ttt)

from collections import defaultdict
df = pd.read_csv('./simulacion.csv')
df = df[:2500]
#prior_dict = defaultdict(lambda:env.Rating(0,25/3,0,1/100))
#for h_key in set([(h,s) for h, s in zip(df.handicap, df.width) ]):
#    prior_dict[h_key]
#dict(prior_dict)

results = list(df.black_win.map(lambda x: [0, 1] if x else [1, 0]))
composition = [[[str(w)], [str(b)]] for w, b in zip(df.white, df.black)]
batch = range(0, len(results))
h = ttt.History(composition, results, batch)
#history.trueSkill()
h.convergence()
w_mean = [print(w) for t, w, b in zip(h.times, df.white, df.black)]

w_mean = [
    h.batches[t].posterior(w).mu
    for t, w, b in zip(h.times, df.white, df.black)
]
b_mean = [
    h.batches[t].posterior(b).mu
    for t, w, b in zip(h.times, df.white, df.black)
]
w_std = [
    h.batches[t].posterior(w).sigma
    for t, w, b in zip(h.times, df.white, df.black)