def test_get_logger_no_duplicate_handlers(self, mock_read_config): config = self.config.copy() # No duplicate hanlders mock_read_config.return_value = config logger = get_logger() number_of_handlers = len(logger.handlers) logger = get_logger() self.assertEqual(len(logger.handlers), number_of_handlers)
def test_get_logger_no_config(self, mock_read_config): config = self.config.copy() # Add null handler if not configured del config["app"]["logger"] mock_read_config.return_value = config logger = get_logger() self.assertTrue( len([h for h in logger.handlers if isinstance(h, logging.NullHandler)]) > 0 )
import torch import torch.utils.data import tqdm from src import config, get_logger, round_probabilities, Dataset, get_metrics logger = get_logger() logger.info("Loading train dataset") trainDataset = Dataset(config["path_to_processed_MAPS"], "train") trainDatasetMean = trainDataset.mean() logger.info("Loading test dataset") testDataset = Dataset(config["path_to_processed_MAPS"], "test") dataloader = torch.utils.data.DataLoader(testDataset, batch_size=config["mini_batch_size"], shuffle=True) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = torch.load("./models/Dnn3Layers/095.pth") model = model.to(device) model = model.eval() testMetrics = {} for batchX, batchy in tqdm.tqdm(dataloader): batchX -= trainDatasetMean batchX = batchX.to(device) batchy = batchy.to(device) prediction = round_probabilities(model(batchX))
def test_get_logger(self, mock_read_config): config = self.config.copy() # success flow mock_read_config.return_value = config logger = get_logger() self.assertTrue(len(logger.handlers) > 1)
import os import re from src import get_logger from src.annict import Annict from src.utils import get_today from src.aws.sns import SNS SNS_TOPIC = os.getenv("SNS_TOPIC_ARN") logger = get_logger(__name__) def handler(event, context): annict = Annict() programs: dict = annict.get_episodes() today_animes: dict = annict.get_stream_episode_specified_date( watch_date=get_specified_date(event), programs=programs) sns = SNS() sns.send_message(topic_arn=SNS_TOPIC, message=create_notify_message(today_animes)) def get_specified_date(event): is_matched = False if event.get('s_date'): # Only 0000-00-00 that is date. is_matched = re.match(r"\d{4}-\d{2}-\d{2}", event.get('s_date'))
default='./output.midi') args = parser.parse_args() # Start generating midi workflow class SongDataset(torch.utils.data.Dataset): def __init__(self, X): self._X = X def __len__(self): return self._X.size()[0] def __getitem__(self, index): return self._X[index] logger = get_logger(file_silent=True) logger.info("Performing cqt") X = cqt(args.wav) logger.info("Done") logger.info("Loading model") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = torch.load(os.path.join(config["public_models_folder"], args.model)) model = model.to(device) model = model.eval() X = torch.from_numpy(X).float() trainDatasetMeans = torch.load(os.path.join(config["public_models_folder"], "train_means.pth"))