def from_params(cls, vocab: Vocabulary, params: Params) -> 'ElmoTokenEmbedder': # type: ignore # pylint: disable=arguments-differ params.add_file_to_archive('options_file') params.add_file_to_archive('weight_file') options_file = params.pop('options_file') weight_file = params.pop('weight_file') requires_grad = params.pop('requires_grad', False) do_layer_norm = params.pop_bool('do_layer_norm', False) dropout = params.pop_float("dropout", 0.5) namespace_to_cache = params.pop("namespace_to_cache", None) if namespace_to_cache is not None: vocab_to_cache = list( vocab.get_token_to_index_vocabulary(namespace_to_cache).keys()) else: vocab_to_cache = None projection_dim = params.pop_int("projection_dim", None) params.assert_empty(cls.__name__) return cls(options_file=options_file, weight_file=weight_file, do_layer_norm=do_layer_norm, dropout=dropout, requires_grad=requires_grad, projection_dim=projection_dim, vocab_to_cache=vocab_to_cache)
def from_params(cls, params: Params): input_dim = params.pop_int('input_dim') num_layers = params.pop_int('num_layers') hidden_dims = params.pop('hidden_dims') activations = params.pop('activations') dropout = params.pop('dropout', 0.0) if isinstance(activations, list): activations = [Activation.by_name(name)() for name in activations] else: activations = Activation.by_name(activations)() params.assert_empty(cls.__name__) return cls(input_dim=input_dim, num_layers=num_layers, hidden_dims=hidden_dims, activations=activations, dropout=dropout)
def from_params(cls, vocab: Vocabulary, params: Params) -> 'Embedding': # type: ignore """ We need the vocabulary here to know how many items we need to embed, and we look for a ``vocab_namespace`` key in the parameter dictionary to know which vocabulary to use. If you know beforehand exactly how many embeddings you need, or aren't using a vocabulary mapping for the things getting embedded here, then you can pass in the ``num_embeddings`` key directly, and the vocabulary will be ignored. In the configuration file, a file containing pretrained embeddings can be specified using the parameter ``"pretrained_file"``. It can be the path to a local file or an URL of a (cached) remote file. Two formats are supported: * hdf5 file - containing an embedding matrix in the form of a torch.Tensor; * text file - an utf-8 encoded text file with space separated fields:: [word] [dim 1] [dim 2] ... The text file can eventually be compressed with gzip, bz2, lzma or zip. You can even select a single file inside an archive containing multiple files using the URI:: "(archive_uri)#file_path_inside_the_archive" where ``archive_uri`` can be a file system path or a URL. For example:: "(http://nlp.stanford.edu/data/glove.twitter.27B.zip)#glove.twitter.27B.200d.txt" """ # pylint: disable=arguments-differ num_embeddings = params.pop_int('num_embeddings', None) vocab_namespace = params.pop("vocab_namespace", "tokens") if num_embeddings is None: num_embeddings = vocab.get_vocab_size(vocab_namespace) embedding_dim = params.pop_int('embedding_dim') pretrained_file = params.pop("pretrained_file", None) projection_dim = params.pop_int("projection_dim", None) trainable = params.pop_bool("trainable", True) padding_index = params.pop_int('padding_index', None) max_norm = params.pop_float('max_norm', None) norm_type = params.pop_float('norm_type', 2.) scale_grad_by_freq = params.pop_bool('scale_grad_by_freq', False) sparse = params.pop_bool('sparse', False) params.assert_empty(cls.__name__) if pretrained_file: # If we're loading a saved model, we don't want to actually read a pre-trained # embedding file - the embeddings will just be in our saved weights, and we might not # have the original embedding file anymore, anyway. weight = _read_pretrained_embeddings_file(pretrained_file, embedding_dim, vocab, vocab_namespace) else: weight = None return cls(num_embeddings=num_embeddings, embedding_dim=embedding_dim, projection_dim=projection_dim, weight=weight, padding_index=padding_index, trainable=trainable, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse)