def main():
    parser = argparse.ArgumentParser(description="SSD Demo.")
    parser.add_argument(
        "config_file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--ckpt",
                        type=str,
                        default=None,
                        help="Trained weights.")
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    detections = get_detections(cfg=cfg, ckpt=args.ckpt)
    json_path = pathlib.Path(cfg.OUTPUT_DIR, "test_detected_boxes.json")
    dump_detections(cfg, detections, json_path)
Пример #2
0
def main():
    parser = argparse.ArgumentParser(description="SSD Demo.")
    parser.add_argument(
        "config_file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument(
        "video_path", type=str, metavar="FILE",
        help="Path to source video")
    parser.add_argument(
        "output_path", type=str,
        help="Output path to save video with detections")
    parser.add_argument("--ckpt", type=str, default=None, help="Trained weights.")
    parser.add_argument("--score_threshold", type=float, default=0.7)
    parser.add_argument("--dataset_type", default="tdt4265", type=str, help='Specify dataset type. Currently support voc and coco.')

    args = parser.parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.freeze()

    print("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        print(config_str)
    print("Running with config:\n{}".format(cfg))

    infer_video(cfg=cfg,
                ckpt=args.ckpt,
                score_threshold=args.score_threshold,
                video_path=args.video_path,
                output_path=args.output_path,
                dataset_type=args.dataset_type)
Пример #3
0
def main():
    parser = argparse.ArgumentParser(description="SSD Demo.")
    parser.add_argument(
        "config_file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument("--ckpt",
                        type=str,
                        default=None,
                        help="Trained weights.")
    parser.add_argument("--score_threshold", type=float, default=0.7)
    parser.add_argument("--images_dir",
                        default='demo/voc',
                        type=str,
                        help='Specify a image dir to do prediction.')
    parser.add_argument(
        "--dataset_type",
        default="voc",
        type=str,
        help='Specify dataset type. Currently support voc and coco.')

    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    print("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        print(config_str)
    print("Running with config:\n{}".format(cfg))

    run_demo(cfg=cfg,
             ckpt=args.ckpt,
             score_threshold=args.score_threshold,
             images_dir=pathlib.Path(args.images_dir),
             output_dir=pathlib.Path(args.images_dir, "result"),
             dataset_type=args.dataset_type)
Пример #4
0
def main():
    parser = argparse.ArgumentParser(
        description='SSD Evaluation on VOC and COCO dataset.')
    parser.add_argument(
        "config_file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument(
        "--ckpt",
        help=
        "The path to the checkpoint for test, default is the latest checkpoint.",
        default=None,
        type=str,
    )
    parser.add_argument("--N_images",
                        default=100,
                        type=int,
                        help="The number of images to check runtime with.")
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )

    args = parser.parse_args()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.TEST.BATCH_SIZE = 1
    cfg.freeze()

    logger = setup_logger("SSD", cfg.OUTPUT_DIR)
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))
    evaluation(cfg, ckpt=args.ckpt, N_images=args.N_images)
Пример #5
0
def main():
    args = get_parser().parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    output_dir = pathlib.Path(cfg.OUTPUT_DIR)
    output_dir.mkdir(exist_ok=True, parents=True)

    logger = setup_logger("SSD", output_dir)
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    model = start_train(cfg)

    logger.info('Start evaluating...')
    torch.cuda.empty_cache()  # speed up evaluating after training finished
    do_evaluation(cfg, model)
Пример #6
0
def main():
    parser = argparse.ArgumentParser(
        description='Single Shot MultiBox Detector Training With PyTorch')
    parser.add_argument(
        "config_file",
        default="",
        metavar="FILE",
        help="path to config file",
        type=str,
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    args = parser.parse_args()

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    output_dir = pathlib.Path(cfg.OUTPUT_DIR)
    output_dir.mkdir(exist_ok=True, parents=True)

    logger = setup_logger("SSD", output_dir)
    logger.info(args)

    logger.info("Loaded configuration file {}".format(args.config_file))
    with open(args.config_file, "r") as cf:
        config_str = "\n" + cf.read()
        logger.info(config_str)
    logger.info("Running with config:\n{}".format(cfg))

    model = start_train(cfg)

    logger.info('Start evaluating...')
    torch.cuda.empty_cache()  # speed up evaluating after training finished
    do_evaluation(cfg, model)
Пример #7
0
import pathlib
import torch
import os
from ssd.config.defaults import cfg
from train import get_parser

if __name__ == "__main__":
    parser = get_parser()
    args = parser.parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)

    # Change this
    MODEL_FILE = "model_021000.pth"

    checkpoint = pathlib.Path(cfg.OUTPUT_DIR, MODEL_FILE)
    assert checkpoint.is_file()
    # Create a new directory for new training run
    new_dir = checkpoint.parent.parent
    new_dir = pathlib.Path(
        checkpoint.parent.parent,
        checkpoint.parent.stem.replace("_waymo", "") + "_tdt4265")
    # Copy new checkpoint
    new_dir.mkdir()
    new_checkpoint_path = new_dir.joinpath("waymo_model.pth")
    # Read last checkpoint written
    with open(new_dir.joinpath("last_checkpoint.txt"), "w") as fp:
        fp.write(f"{new_checkpoint_path}")

    # Load last checkpoint and only transfer learn parameters from the model (not optimizer etc)
    new_checkpoint = {}
Пример #8
0
                      cfg.INPUT.IMAGE_SIZE[1],
                      fill=False,
                      edgecolor="black"))
    do_plot = False

    # Only plot prior boxes at middle, for visability
    indice_to_plot = len(indices_to_visualize) / 2

    for i, idx in enumerate(indices_to_visualize):
        prior = priors_as_location[idx]
        color = colors[i]
        if i >= (indice_to_plot - len(aspect_ratio_indices) // 2) and i < (
                indice_to_plot + len(aspect_ratio_indices) // 2):
            do_plot = True
        else:
            do_plot = False

        plot_bbox(ax, prior, color, do_plot, PLOT_CIRCLE)
    plt.show()


if __name__ == "__main__":
    config_path = "configs/train_rdd2020.yaml"
    cfg.merge_from_file(config_path)
    cfg.freeze()

    visualize_validation_set(cfg)
    #visualize_training_set(cfg)

    #visualize_prior_boxes(cfg, layer=3)