def build_backbone(cfg): backbone_name = cfg.MODEL.BACKBONE.NAME print(backbone_name) if backbone_name == "basic": model = BasicModel(cfg) return model if backbone_name == "inception": model = InceptionV3(cfg) return model if backbone_name == "resnet34": model = Resnet34(cfg) return model if backbone_name == "resnet50": model = Resnet50(cfg) return model if backbone_name == "resnet34": model = Resnet34(cfg) return model if backbone_name == "vgg": model = VGG(cfg) if cfg.MODEL.BACKBONE.PRETRAINED: state_dict = load_state_dict_from_url( "https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth" ) model.init_from_pretrain(state_dict) return model
def build_backbone(cfg): backbone_name = cfg.MODEL.BACKBONE.NAME if backbone_name == "basic": model = Second_Improved_BasicModel(cfg) return model if backbone_name == "vgg": model = VGG(cfg) if cfg.MODEL.BACKBONE.PRETRAINED: state_dict = load_state_dict_from_url( "https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth" ) model.init_from_pretrain(state_dict) return model
def build_backbone(cfg): backbone_name = cfg.MODEL.BACKBONE.NAME if backbone_name == "resnet_rdd": model = ResNetRDD(cfg) return model if backbone_name == "resnet_tdt": model = ResNetTDT(cfg, block=BasicBlock) return model if backbone_name == "vgg": model = VGG(cfg) if cfg.MODEL.BACKBONE.PRETRAINED: state_dict = load_state_dict_from_url( "https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth" ) model.init_from_pretrain(state_dict) return model
def build_backbone(cfg): backbone_name = cfg.MODEL.BACKBONE.NAME if backbone_name == "Inception": model = Inception(cfg) return model if backbone_name == "basic": model = BasicModel(cfg) return model if backbone_name == "MobileNet": model = MobileNet(cfg) return model if backbone_name == "ResNet50": model = ResNet50(cfg) return model if backbone_name == "ResNet": model = ResNet(cfg) return model if backbone_name == "ResNet50_v2": model = ResNet50_v2(cfg) return model if backbone_name == "ResNext": model = ResNext(cfg) return model if backbone_name == "vgg": model = VGG(cfg) if cfg.MODEL.BACKBONE.PRETRAINED: state_dict = load_state_dict_from_url( "https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth") model.init_from_pretrain(state_dict) return model
def build_backbone(cfg): backbone_name = cfg.MODEL.BACKBONE.NAME print(backbone_name) if backbone_name == "basic": model = BasicModel(cfg) return model if backbone_name == "vgg": model = VGG(cfg) if cfg.MODEL.BACKBONE.PRETRAINED: state_dict = load_state_dict_from_url( "https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth" ) model.init_from_pretrain(state_dict) return model if backbone_name == "googlenet": model = GoogleNet(cfg) return model if backbone_name == "densenet": model = DenseNet(cfg) return model if backbone_name == "resnext": model = ResNext(cfg) return model
def build_backbone(cfg): backbone_name = cfg.MODEL.BACKBONE.NAME print(backbone_name) if backbone_name == "basic": model = BasicModel(cfg) return model if backbone_name == "vgg": model = VGG(cfg) if cfg.MODEL.BACKBONE.PRETRAINED: state_dict = load_state_dict_from_url( "https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth") model.init_from_pretrain(state_dict) if backbone_name == "resnet": depth = cfg.MODEL.BACKBONE.DEPTH model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',} name_dict = {18: 'resnet18', 34: 'resnet34', 50: 'resnet50', 101: 'resnet101', 152: 'resnet152'} layers_dict = {18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]} block_dict = {18: BasicBlock, 34: BasicBlock, 50: Bottleneck, 101: Bottleneck, 152: Bottleneck} model = ResNet(cfg, block_dict[depth], layers_dict[depth]) if cfg.MODEL.BACKBONE.PRETRAINED: pretrained_dict = model_zoo.load_url(model_urls[name_dict[depth]]) model_dict = model.state_dict() pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model_dict.update(pretrained_dict) model.load_state_dict(model_dict) return model if backbone_name == "resnest": model = ResNest(cfg,BasicBlock) return model