Пример #1
0
def start_train(cfg):
    logger = logging.getLogger('SSD.trainer')
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)

    optimizer = torch.optim.SGD(
        model.parameters(),
        lr=cfg.SOLVER.LR,
        momentum=cfg.SOLVER.MOMENTUM,
        weight_decay=cfg.SOLVER.WEIGHT_DECAY
    )


    arguments = {"iteration": 0}
    save_to_disk = True
    checkpointer = CheckPointer(
        model, optimizer, cfg.OUTPUT_DIR, save_to_disk, logger,
        )
    extra_checkpoint_data = checkpointer.load()
    arguments.update(extra_checkpoint_data)

    max_iter = cfg.SOLVER.MAX_ITER
    train_loader = make_data_loader(cfg, is_train=True, max_iter=max_iter, start_iter=arguments['iteration'])

    model = do_train(
        cfg, model, train_loader, optimizer,
        checkpointer, arguments)
    return model
Пример #2
0
def start_train(cfg):
    logger = logging.getLogger('SSD.trainer')
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)

    optimizer = torch.optim.SGD(
        filter(lambda p: p.requires_grad, model.parameters()),
        lr=cfg.SOLVER.LR,
        momentum=cfg.SOLVER.MOMENTUM,
        weight_decay=cfg.SOLVER.WEIGHT_DECAY,
        nesterov=True,
    )
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer, T_max=int(cfg.SOLVER.MAX_ITER / 1000), eta_min=0)
    arguments = {"iteration": 0}
    save_to_disk = True
    checkpointer = CheckPointer(
        model,
        optimizer,
        cfg.OUTPUT_DIR,
        save_to_disk,
        logger,
    )
    extra_checkpoint_data = checkpointer.load()
    arguments.update(extra_checkpoint_data)

    max_iter = cfg.SOLVER.MAX_ITER
    train_loader = make_data_loader(cfg,
                                    is_train=True,
                                    max_iter=max_iter,
                                    start_iter=arguments['iteration'])

    model = do_train(cfg, model, train_loader, optimizer, checkpointer,
                     arguments, scheduler)
    return model
Пример #3
0
def run_demo(cfg,
             ckpt,
             score_threshold,
             images_dir: pathlib.Path,
             output_dir: pathlib.Path,
             dataset_type,
             num_images=None):
    if dataset_type == "voc":
        class_names = VOCDataset.class_names
    elif dataset_type == 'coco':
        class_names = COCODataset.class_names
    elif dataset_type == "mnist":
        class_names = MNISTDetection.class_names
    elif dataset_type == "tdt4265":
        class_names = TDT4265Dataset.class_names
    elif dataset_type == "waymo":
        class_names = WaymoDataset.class_names
    else:
        raise NotImplementedError('Not implemented now.')

    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)
    checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR)
    checkpointer.load(ckpt, use_latest=ckpt is None)
    weight_file = ckpt if ckpt else checkpointer.get_checkpoint_file()
    print('Loaded weights from {}'.format(weight_file))

    image_paths = list(images_dir.glob("*.png")) + list(
        images_dir.glob("*.jpg"))

    output_dir.mkdir(exist_ok=True, parents=True)

    transforms = build_transforms(cfg, is_train=False)
    model.eval()
    drawn_images = []
    for i, image_path in enumerate(
            tqdm.tqdm(image_paths[:num_images], desc="Predicting on images")):
        image_name = image_path.stem

        image = np.array(Image.open(image_path).convert("RGB"))
        height, width = image.shape[:2]
        images = transforms(image)[0].unsqueeze(0)

        result = model(torch_utils.to_cuda(images))[0]

        result = result.resize((width, height)).cpu().numpy()
        boxes, labels, scores = result['boxes'], result['labels'], result[
            'scores']
        indices = scores > score_threshold
        boxes = boxes[indices]
        labels = labels[indices]
        scores = scores[indices]
        drawn_image = draw_boxes(image, boxes, labels, scores,
                                 class_names).astype(np.uint8)
        drawn_images.append(drawn_image)
        im = Image.fromarray(drawn_image)
        output_path = output_dir.joinpath(f"{image_name}.png")
        im.save(output_path)
    return drawn_images
Пример #4
0
def run_demo(cfg, ckpt, score_threshold, images_dir: pathlib.Path,
             output_dir: pathlib.Path, dataset_type):
    if dataset_type == "voc":
        class_names = VOCDataset.class_names
    elif dataset_type == 'coco':
        class_names = COCODataset.class_names
    elif dataset_type == "mnist":
        class_names = MNISTDetection.class_names
    else:
        raise NotImplementedError('Not implemented now.')

    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)
    checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR)
    checkpointer.load(ckpt, use_latest=ckpt is None)
    weight_file = ckpt if ckpt else checkpointer.get_checkpoint_file()
    print('Loaded weights from {}'.format(weight_file))

    image_paths = list(images_dir.glob("*.png")) + list(
        images_dir.glob("*.jpg"))

    output_dir.mkdir(exist_ok=True, parents=True)

    transforms = build_transforms(cfg, is_train=False)
    model.eval()
    drawn_images = []
    for i, image_path in enumerate(image_paths):
        start = time.time()
        image_name = image_path.name

        image = np.array(Image.open(image_path).convert("RGB"))
        height, width = image.shape[:2]
        images = transforms(image)[0].unsqueeze(0)
        load_time = time.time() - start

        start = time.time()
        result = model(torch_utils.to_cuda(images))[0]
        inference_time = time.time() - start

        result = result.resize((width, height)).cpu().numpy()
        boxes, labels, scores = result['boxes'], result['labels'], result[
            'scores']
        indices = scores > score_threshold
        boxes = boxes[indices]
        labels = labels[indices]
        scores = scores[indices]
        meters = "|".join([
            'objects {:02d}'.format(len(boxes)),
            'load {:03d}ms'.format(round(load_time * 1000)),
            'inference {:03d}ms'.format(round(inference_time * 1000)),
            'FPS {}'.format(round(1.0 / inference_time))
        ])
        image_name = image_path.name

        drawn_image = draw_boxes(image, boxes, labels, scores,
                                 class_names).astype(np.uint8)
        drawn_images.append(drawn_image)
    return drawn_images
Пример #5
0
def start_train(cfg, visualize_example=False):
    logger = logging.getLogger('SSD.trainer')
    model = SSDDetector(cfg)
    print(model)
    model = torch_utils.to_cuda(model)

    optimizer = torch.optim.SGD(model.parameters(),
                                lr=cfg.SOLVER.LR,
                                momentum=cfg.SOLVER.MOMENTUM,
                                weight_decay=cfg.SOLVER.WEIGHT_DECAY)
    """
    optimizer = torch.optim.Adam(
        model.parameters(),
        lr=cfg.SOLVER.LR,
        weight_decay=cfg.SOLVER.WEIGHT_DECAY
    )
    """
    """
        lr_scheduler = torch.optim.lr_scheduler.CyclicLR(
        optimizer= optimizer,
        base_lr= cfg.SOLVER.LR /10,
        max_lr=0.05,
        step_size_up=8000,
        mode='triangular2'
        )

    """

    arguments = {"iteration": 0}
    save_to_disk = True
    checkpointer = CheckPointer(
        model,
        optimizer,
        cfg.OUTPUT_DIR,
        save_to_disk,
        logger,
    )
    extra_checkpoint_data = checkpointer.load()
    arguments.update(extra_checkpoint_data)

    max_iter = cfg.SOLVER.MAX_ITER
    train_loader = make_data_loader(cfg,
                                    is_train=True,
                                    max_iter=max_iter,
                                    start_iter=arguments['iteration'])

    model = do_train(cfg,
                     model,
                     train_loader,
                     optimizer,
                     checkpointer,
                     arguments,
                     visualize_example,
                     lr_scheduler=None)
    return model
Пример #6
0
def get_detections(cfg, ckpt):
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)
    checkpointer = CheckPointer(cfg, model, save_dir=cfg.OUTPUT_DIR)
    checkpointer.load(ckpt, use_latest=ckpt is None)
    weight_file = ckpt if ckpt else checkpointer.get_checkpoint_file()
    print('Loaded weights from {}'.format(weight_file))

    dataset_path = DatasetCatalog.DATASETS["tdt4265_test"]["data_dir"]
    dataset_path = pathlib.Path(cfg.DATASET_DIR, dataset_path)
    image_dir = pathlib.Path(dataset_path, "images")
    image_paths = list(image_dir.glob("*.jpg"))

    transforms = build_transforms(cfg, is_train=False)
    model.eval()
    detections = []
    labels = read_labels(
        image_dir.parent.parent.joinpath("train", "labels.json"))
    check_all_images_exists(labels, image_paths)
    # Filter labels on if they are test and only take the 7th frame
    labels = [label for label in labels if label["is_test"]]
    labels = [label for label in labels if label["image_id"] % 7 == 0]
    for i, label in enumerate(tqdm.tqdm(labels, desc="Inference on images")):
        image_id = label["image_id"]
        image_path = image_dir.joinpath(f"{image_id}.jpg")
        image_detections = {"image_id": int(image_id), "bounding_boxes": []}
        image = np.array(Image.open(image_path).convert("RGB"))
        height, width = image.shape[:2]
        images = transforms(image)[0].unsqueeze(0)
        result = model(torch_utils.to_cuda(images))[0]
        result = result.resize((width, height)).cpu().numpy()
        boxes, labels, scores = result['boxes'], result['labels'], result[
            'scores']
        for idx in range(len(boxes)):
            box = boxes[idx]
            label_id = labels[idx]
            label = TDT4265Dataset.class_names[label_id]
            assert label != "__background__"
            score = float(scores[idx])
            assert box.shape == (4, )
            json_box = {
                "xmin": float(box[0]),
                "ymin": float(box[1]),
                "xmax": float(box[2]),
                "ymax": float(box[3]),
                "label": str(label),
                "label_id": int(label_id),
                "confidence": float(score)
            }
            image_detections["bounding_boxes"].append(json_box)
        detections.append(image_detections)
    return detections
Пример #7
0
def start_train(cfg):
    logger = logging.getLogger('SSD.trainer')
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)

    if cfg.SOLVER.TYPE == "adam":
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=cfg.SOLVER.LR,
            weight_decay=cfg.SOLVER.WEIGHT_DECAY,
        )
    elif cfg.SOLVER.TYPE == "sgd":
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=cfg.SOLVER.LR,
                                    weight_decay=cfg.SOLVER.WEIGHT_DECAY,
                                    momentum=cfg.SOLVER.MOMENTUM)
    else:
        # Default to Adam if incorrect solver
        print("WARNING: Incorrect solver type, defaulting to Adam")
        optimizer = torch.optim.Adam(
            model.parameters(),
            lr=cfg.SOLVER.LR,
            weight_decay=cfg.SOLVER.WEIGHT_DECAY,
        )

    scheduler = LinearMultiStepWarmUp(cfg, optimizer)

    arguments = {"iteration": 0}
    save_to_disk = True
    checkpointer = CheckPointer(
        model,
        optimizer,
        cfg.OUTPUT_DIR,
        save_to_disk,
        logger,
    )
    extra_checkpoint_data = checkpointer.load()
    arguments.update(extra_checkpoint_data)

    max_iter = cfg.SOLVER.MAX_ITER
    train_loader = make_data_loader(cfg,
                                    is_train=True,
                                    max_iter=max_iter,
                                    start_iter=arguments['iteration'])

    model = do_train(cfg, model, train_loader, optimizer, checkpointer,
                     arguments, scheduler)
    return model
Пример #8
0
def start_train(cfg):
    logger = logging.getLogger('SSD.trainer')
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)

    lr = cfg.SOLVER.LR
    optimizer = make_optimizer(cfg, model, lr)

    milestones = [step for step in cfg.SOLVER.LR_STEPS]
    scheduler = make_lr_scheduler(cfg, optimizer, milestones)

    arguments = {"iteration": 0}
    save_to_disk = True
    checkpointer = CheckPointer(cfg, model, optimizer, scheduler,
                                cfg.OUTPUT_DIR, save_to_disk, logger)
    extra_checkpoint_data = checkpointer.load()
    arguments.update(extra_checkpoint_data)

    max_iter = cfg.SOLVER.MAX_ITER
    train_loader = make_data_loader(cfg,
                                    is_train=True,
                                    max_iter=max_iter,
                                    start_iter=arguments['iteration'])

    model = do_train(cfg, model, train_loader, optimizer, scheduler,
                     checkpointer, arguments)
    return model
Пример #9
0
def evaluation(cfg, ckpt):
    logger = logging.getLogger("SSD.inference")

    model = SSDDetector(cfg)
    checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR, logger=logger)
    model = torch_utils.to_cuda(model)
    checkpointer.load(ckpt, use_latest=ckpt is None)
    do_evaluation(cfg, model)
Пример #10
0
def start_train(cfg):
    logger = logging.getLogger('SSD.trainer')
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)

    # SGD
    # optimizer = torch.optim.SGD(
    #     model.parameters(),
    #     lr=cfg.SOLVER.LR,
    #     momentum=cfg.SOLVER.MOMENTUM,
    #     weight_decay=cfg.SOLVER.WEIGHT_DECAY
    # )

    # Adam
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=cfg.SOLVER.LR,
                                 weight_decay=cfg.SOLVER.WEIGHT_DECAY)

    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=optimizer,
                                                     milestones=[6000, 10000],
                                                     gamma=cfg.SOLVER.GAMMA)

    arguments = {"iteration": 0}
    save_to_disk = True
    checkpointer = CheckPointer(
        model,
        optimizer,
        cfg.OUTPUT_DIR,
        save_to_disk,
        logger,
    )
    extra_checkpoint_data = checkpointer.load()
    arguments.update(extra_checkpoint_data)

    max_iter = cfg.SOLVER.MAX_ITER
    train_loader = make_data_loader(cfg,
                                    is_train=True,
                                    max_iter=max_iter,
                                    start_iter=arguments['iteration'])

    model = do_train(cfg, model, train_loader, optimizer, checkpointer,
                     arguments, scheduler)
    return model
Пример #11
0
def get_detections(cfg, ckpt):
    model = SSDDetector(cfg)
    model = torch_utils.to_cuda(model)
    checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR)
    checkpointer.load(ckpt, use_latest=ckpt is None)
    weight_file = ckpt if ckpt else checkpointer.get_checkpoint_file()
    print('Loaded weights from {}'.format(weight_file))

    dataset_path = DatasetCatalog.DATASETS["tdt4265_test"]["data_dir"]
    dataset_path = pathlib.Path(cfg.DATASET_DIR, dataset_path)
    image_dir = pathlib.Path(dataset_path)
    image_paths = list(image_dir.glob("*.jpg"))

    transforms = build_transforms(cfg, is_train=False)
    model.eval()
    detections = []
    for image_path in tqdm.tqdm(image_paths, desc="Inference on images"):
        image = np.array(Image.open(image_path).convert("RGB"))
        height, width = image.shape[:2]
        images = transforms(image)[0].unsqueeze(0)
        result = model(torch_utils.to_cuda(images))[0]
        result = result.resize((width, height)).cpu().numpy()
        boxes, labels, scores = result['boxes'], result['labels'], result[
            'scores']
        for idx in range(len(boxes)):
            box = boxes[idx]
            label_id = labels[idx]
            label = TDT4265Dataset.class_names[label_id]
            assert label != "__background__"
            score = float(scores[idx])
            assert box.shape == (4, )
            xmin, ymin, xmax, ymax = box
            width = xmax - xmin
            height = ymax - ymin
            detections.append({
                "image_id": image_path.stem,
                "category_id": LABEL_MAP[label],
                "score": score,
                "bbox": [xmin, ymin, width, height]
            })
    return detections
Пример #12
0
def evaluation(cfg, ckpt, N_images: int):
    model = SSDDetector(cfg)
    logger = logging.getLogger("SSD.inference")
    checkpointer = CheckPointer(model, save_dir=cfg.OUTPUT_DIR, logger=logger)
    model = torch_utils.to_cuda(model)
    checkpointer.load(ckpt, use_latest=ckpt is None)
    model.eval()
    data_loaders_val = make_data_loader(cfg, is_train=False)
    for data_loader in data_loaders_val:
        batch = next(iter(data_loader))
        images, targets, image_ids = batch
        images = torch_utils.to_cuda(images)
        imshape = list(images.shape[2:])
        # warmup
        print("Checking runtime for image shape:", imshape)
        for i in range(10):
            model(images)
        start_time = time.time()
        for i in range(N_images):
            outputs = model(images)
        total_time = time.time() - start_time
        print("Runtime for image shape:", imshape)
        print("Total runtime:", total_time)
        print("FPS:", N_images / total_time)
Пример #13
0
def do_train(
    cfg: CfgNode,
    model: SSDDetector,
    data_loader: DataLoader,
    optimizer: SGD,
    scheduler: MultiStepLR,
    checkpointer,
    device: device,
    arguments,
    args: Namespace,
    output_dir: Path,
    model_manager: Dict[str, Any],
) -> SSDDetector:
    logger = logging.getLogger("SSD.trainer")
    logger.info("Start training ...")
    meters = MetricLogger()

    model.train()
    save_to_disk = dist_util.get_rank() == 0
    if args.use_tensorboard and save_to_disk:
        import tensorboardX

        summary_writer = tensorboardX.SummaryWriter(logdir=output_dir / "logs")
    else:
        summary_writer = None

    max_iter = len(data_loader)
    start_iter = arguments["iteration"]
    start_training_time = time.time()
    end = time.time()

    logger.info("MAX_ITER: {}".format(max_iter))

    # GB: 2019-09-08:
    # For rescaling tests, do an eval before fine-tuning-training, so we know what
    # the eval results are before any weights are updated:
    # do_evaluation(
    #     cfg,
    #     model,
    #     distributed=args.distributed,
    #     iteration=0,
    # )
    # model.train()  # *IMPORTANT*: change to train mode after eval.

    for iteration, (images, targets, _) in enumerate(data_loader, start_iter):
        # TODO: Print learning rate:
        iteration = iteration + 1
        arguments["iteration"] = iteration
        scheduler.step()

        images = images.to(device)
        targets = targets.to(device)
        loss_dict = model(images, targets=targets)
        loss = sum(loss for loss in loss_dict.values())

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = reduce_loss_dict(loss_dict)
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())
        loss = sum(loss for loss in loss_dict.values())
        meters.update(total_loss=losses_reduced, **loss_dict_reduced)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        batch_time = time.time() - end
        end = time.time()
        meters.update(time=batch_time)
        if iteration % args.log_step == 0:
            eta_seconds = meters.time.global_avg * (max_iter - iteration)
            eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
            logger.info(
                meters.delimiter.join([
                    "iter: {iter:06d}",
                    "lr: {lr:.5f}",
                    "{meters}",
                    "eta: {eta}",
                    "mem: {mem}M",
                ]).format(
                    iter=iteration,
                    lr=optimizer.param_groups[0]["lr"],
                    meters=str(meters),
                    eta=eta_string,
                    mem=round(torch.cuda.max_memory_allocated() / 1024.0 /
                              1024.0),
                ))
            if summary_writer:
                global_step = iteration
                summary_writer.add_scalar("losses/total_loss",
                                          losses_reduced,
                                          global_step=global_step)
                for loss_name, loss_item in loss_dict_reduced.items():
                    summary_writer.add_scalar(
                        "losses/{}".format(loss_name),
                        loss_item,
                        global_step=global_step,
                    )
                summary_writer.add_scalar("lr",
                                          optimizer.param_groups[0]["lr"],
                                          global_step=global_step)

        # This project doesn't use epochs, it does something with batch samplers
        # instead, so there is only a concept of "iteration". For now hardcode epoch as
        # zero to put into file name:
        epoch = 0
        save_name = f"ssd{cfg.INPUT.IMAGE_SIZE}-vgg_{cfg.DATASETS.TRAIN[0]}_0_{epoch}_{iteration:06d}"
        model_path = Path(output_dir) / f"{save_name}.pth"

        # Above if block would be replaced by this:
        if iteration % args.save_step == 0:
            checkpointer.save(save_name, **arguments)

        # Do eval when training, to trace the mAP changes and see performance improved
        # whether or nor
        if (args.eval_step > 0 and iteration % args.eval_step == 0
                and not iteration == max_iter):
            eval_results = do_evaluation(
                cfg,
                model,
                distributed=args.distributed,
                iteration=iteration,
            )
            do_best_model_checkpointing(cfg, model_path, eval_results,
                                        model_manager, logger)
            if dist_util.get_rank() == 0 and summary_writer:
                for eval_result, dataset in zip(eval_results,
                                                cfg.DATASETS.TEST):
                    write_metric(
                        eval_result["metrics"],
                        "metrics/" + dataset,
                        summary_writer,
                        iteration,
                    )
            model.train()  # *IMPORTANT*: change to train mode after eval.

        if iteration % args.save_step == 0:
            remove_extra_checkpoints(output_dir, [model_path], logger)

    checkpointer.save("model_final", **arguments)
    # compute training time
    total_training_time = int(time.time() - start_training_time)
    total_time_str = str(datetime.timedelta(seconds=total_training_time))
    logger.info("Total training time: {} ({:.4f} s / it)".format(
        total_time_str, total_training_time / max_iter))
    return model
Пример #14
0
from ssd.config.defaults import cfg
from ssd.data.build import make_data_loader
from ssd.modeling.detector import SSDDetector

# config
cfg.MODEL.BACKBONE.NAME = 'resnet34'
cfg.INPUT.IMAGE_SIZE = 300
# cfg.MODEL.BACKBONE.OUT_CHANNELS = (256,512,256,256,128,64) # wip34
cfg.MODEL.BACKBONE.OUT_CHANNELS = (128,256,512,256,256,128) # resnet34
cfg.MODEL.PRIORS.FEATURE_MAPS = [38, 19, 10, 5, 3, 1]
cfg.SOLVER.BATCH_SIZE = 2
cfg.DATASET_DIR = "datasets"
cfg.DATASETS.TRAIN = ("waymo_train",)
# cfg.DATASETS.TEST = ("waymo_val",)

model = SSDDetector(cfg)
for level, bank in enumerate(model.backbone.feature_extractor):
    bank_n = level+1
    print("Bank %d:" % bank_n, bank)

data_loader = make_data_loader(cfg, is_train=True, max_iter=cfg.SOLVER.MAX_ITER)

images, targets, _ = next(iter(data_loader)) # 1 batch
outputs = model(images, targets=targets)