Пример #1
0
 def __getitem__(self, image_index):
     image_id = self.image_ids[image_index]
     impath = self.config.VOC_ROOT + '/JPEGImages/'
     imn = impath + image_id + '.jpg'
     img = Image.open(imn).convert("RGB")
     gt_class_mlabel = torch.from_numpy(self.label_dic[image_id])
     gt_class_mlabel_bg = torch.from_numpy(
         np.concatenate(([1], self.label_dic[image_id])))
     psan = 'prepare_labels/results/out_aff/' + image_id + '.npy'
     psa = np.array(list(np.load(psan).item().values())).transpose(1, 2, 0)
     psan = 'prepare_labels/results/out_aff_crf/' + image_id + '.npy'
     psa_crf = np.load(psan).transpose(1, 2, 0)
     h = psa.shape[0]
     w = psa.shape[1]
     saven = 'precompute/' + self.config.modelid + '/da_precompute_' + self.config.modelid + '_' + str(
         image_index) + '.npy'
     dd0 = np.load(saven).transpose(1, 2, 0)
     dd0 = np.reshape(cv2.resize(dd0, (w, h)), (h, w, 1))
     saven = 'precompute/' + self.config.modelid + '/dk_precompute_' + self.config.modelid + '_' + str(
         image_index) + '.npy'
     dd1 = np.load(saven).transpose(1, 2, 0)
     dd1 = np.reshape(cv2.resize(dd1, (w, h)), (h, w, 1))
     # resize inputs
     img_norm, img_org, psa, psa_crf, dp0, dp1 = self.img_label_resize(
         [img, np.array(img), psa, psa_crf, dd0, dd1])
     img_org = cv2.resize(img_org, self.config.OUT_SHAPE)
     dd0 = cv2.resize(dd0, self.config.OUT_SHAPE)
     dd1 = cv2.resize(dd1, self.config.OUT_SHAPE)
     psa = cv2.resize(psa, self.config.OUT_SHAPE)
     psa_crf = cv2.resize(psa_crf, self.config.OUT_SHAPE)
     psa = self.get_prob_label(psa, gt_class_mlabel_bg).transpose(2, 0, 1)
     psa_crf = self.get_prob_label(psa_crf,
                                   gt_class_mlabel_bg).transpose(2, 0, 1)
     psa_mask = np.argmax(psa, 0)
     psa_crf_mask = np.argmax(psa_crf, 0)
     dd0 = torch.from_numpy(dd0).unsqueeze(0)
     dd1 = torch.from_numpy(dd1).unsqueeze(0)
     psa_mask = torch.from_numpy(psa_mask).unsqueeze(0)
     psa_crf_mask = torch.from_numpy(psa_crf_mask).unsqueeze(0)
     ignore_flags = torch.from_numpy(
         ssddF.get_ignore_flags(psa_mask, psa_crf_mask,
                                [gt_class_mlabel])).float()
     # integration using sssdd module
     # the parameters are different from dssdd module
     (_, _, _, seed_mask) = ssddF.get_dd_mask(dd0,
                                              dd1,
                                              psa_mask,
                                              psa_crf_mask,
                                              ignore_flags,
                                              dd_bias=0.1,
                                              bg_bias=0.1)
     return img_norm, img_org, gt_class_mlabel, gt_class_mlabel_bg, seed_mask[
         0]
Пример #2
0
 def forward(self, inputs):
     (seg_outs_main, seg_outs_sub, seg_crf_mask,
      feats), seed_mask, gt_class_mlabel = inputs
     [x1, x2, x3, x4, x5] = feats
     x1 = F.avg_pool2d(x1, 2, 2)
     # first step
     seg_main, seg_prob_main, seg_mask_main, seg_head_main = seg_outs_main
     ignore_flags0 = torch.from_numpy(
         ssddF.get_ignore_flags(seg_mask_main, seg_crf_mask,
                                gt_class_mlabel)).cuda().float()
     dd_head0 = self.dd_head0((seg_head_main.detach(), x1.detach()))
     dd00 = ssddF.get_dd(self.dd0, dd_head0, seg_mask_main)
     dd01 = ssddF.get_dd(self.dd0, dd_head0, seg_crf_mask)
     dd_outs0 = ssddF.get_dd_mask(dd00,
                                  dd01,
                                  seg_mask_main,
                                  seg_crf_mask,
                                  ignore_flags0,
                                  dd_bias=0.4,
                                  bg_bias=0)
     (dd01, dd10, ignore_flags0, refine_mask0) = dd_outs0
     # second step
     seg_sub, seg_prob_sub, seg_mask_sub, seg_head_sub = seg_outs_sub
     dd_head1 = self.dd_head1((seg_head_sub.detach(), x1.detach()))
     dd10 = ssddF.get_dd(self.dd1, dd_head1, seed_mask)
     dd11 = ssddF.get_dd(self.dd1, dd_head1, refine_mask0)
     ignore_flags1 = torch.from_numpy(
         ssddF.get_ignore_flags(seed_mask, refine_mask0,
                                gt_class_mlabel)).cuda().float()
     dd_outs1 = ssddF.get_dd_mask(dd10,
                                  dd11,
                                  seed_mask,
                                  refine_mask0,
                                  ignore_flags1,
                                  dd_bias=0.4,
                                  bg_bias=0)
     return dd_outs0, dd_outs1
Пример #3
0
 def forward(self, inputs):
     (seg_outs_main,
      feats), psa_mask, psa_crf_mask, gt_class_mlabel = inputs
     [x1, x2, x3, x4, x5] = feats
     x1 = F.avg_pool2d(x1, 2, 2)
     # first step
     seg_main, seg_prob_main, seg_mask_main, seg_head_main = seg_outs_main
     ignore_flags0 = torch.from_numpy(
         ssddF.get_ignore_flags(psa_mask, psa_crf_mask,
                                gt_class_mlabel)).cuda().float()
     dd_head0 = self.dd_head0((seg_head_main.detach(), x1.detach()))
     dd00 = ssddF.get_dd(self.dd0, dd_head0, psa_mask)
     dd01 = ssddF.get_dd(self.dd0, dd_head0, psa_crf_mask)
     dd_outs0 = ssddF.get_dd_mask(dd00,
                                  dd01,
                                  psa_mask,
                                  psa_crf_mask,
                                  ignore_flags0,
                                  dd_bias=0.1,
                                  bg_bias=0.1)
     return dd_outs0