Пример #1
0
def main():
    input_path = get_data("spe_spectrum_comparison/mc_lab.h5")
    output_path = get_plot("d190624_icrc/mc_lab.pdf")
    process(input_path, output_path)

    input_path = get_data("spe_spectrum_comparison/checm_checs.h5")
    output_path = get_plot("d190624_icrc/checm_checs.pdf")
    process(input_path, output_path)
Пример #2
0
def main():
    # sql = ASTRISQLQuerier()
    # start = pd.Timestamp("2019-04-29 00:00")
    # end = pd.Timestamp("2019-05-13 00:00")
    # ra = sql.get_table_between_datetimes("TCU_ACTUAL_RA", start, end)
    # dec = sql.get_table_between_datetimes("TCU_ACTUAL_DEC", start, end)
    # alt = sql.get_table_between_datetimes("TCU_ELACTPOS", start, end)
    # az = sql.get_table_between_datetimes("TCU_AZACTPOS", start, end)

    path = get_astri_2019("astri_db.h5")
    with HDF5Reader(path) as reader:
        ra = reader.read("TCU_ACTUAL_RA")
        dec = reader.read("TCU_ACTUAL_DEC")
        alt = reader.read("TCU_ELACTPOS")
        az = reader.read("TCU_AZACTPOS")

    df = pd.merge(pd.merge(
        ra, dec,
        on='timestamp').rename(columns=dict(value_x="ra", value_y="dec")),
                  pd.merge(alt, az, on='timestamp').rename(
                      columns=dict(value_x="alt", value_y="az")),
                  on='timestamp')

    location = EarthLocation.from_geodetic(lon=14.974609,
                                           lat=37.693267,
                                           height=1750)
    altaz_frame = AltAz(location=location, obstime=df['timestamp'])
    telescope_pointing = SkyCoord(
        alt=df['alt'].values,
        az=df['az'].values,
        unit='deg',
        frame=altaz_frame,
    )
    telescope_pointing_icrs = telescope_pointing.icrs
    df['ra_calc'] = telescope_pointing_icrs.ra.deg
    df['dec_calc'] = telescope_pointing_icrs.dec.deg

    d_ra = np.arctan2(np.sin(df['ra'] - df['ra_calc']),
                      np.cos(df['ra'] - df['ra_calc']))
    d_dec = np.arctan2(np.sin(df['dec'] - df['dec_calc']),
                       np.cos(df['dec'] - df['dec_calc']))

    p = Plotter()
    p.ax.plot(df['timestamp'], d_ra)
    p.ax.set_xlabel("Timestamp")
    p.ax.set_ylabel("RA_database - RA_calculated (deg)")
    p.fig.autofmt_xdate()
    p.save(get_plot("d190527_astri_sql/ra.pdf"))

    p = Plotter()
    p.ax.plot(df['timestamp'], d_dec)
    p.ax.set_xlabel("Timestamp")
    p.ax.set_ylabel("DEC_database - DEC_calculated (deg)")
    p.fig.autofmt_xdate()
    p.save(get_plot("d190527_astri_sql/dec.pdf"))
Пример #3
0
def main():
    # path = get_data("d191018_alpha/d2019-05-15_simulations_gamma1deg_onoff.h5")
    # output = get_plot("d191018_alpha/optimise_alpha_cut/d2019-05-15_simulations_gamma1deg_onoff_nocut.pdf")
    # title = "ON/OFF MC (1deg) (No cuts)"
    # process(path, output, title, None)
    # output = get_plot("d191018_alpha/optimise_alpha_cut/d2019-05-15_simulations_gamma1deg_onoff_softcut.pdf")
    # title = "ON/OFF MC (1deg) (Soft cuts)"
    # process(path, output, title, CUTS_ONOFF_SOFT)
    # output = get_plot("d191018_alpha/optimise_alpha_cut/d2019-05-15_simulations_gamma1deg_onoff_harshcut.pdf")
    # title = "ON/OFF MC (1deg) (Harsh cuts)"
    # process(path, output, title, CUTS_ONOFF_HARSH)
    #
    # path = get_data("d191018_alpha/d2019-05-15_simulations_gamma1deg_wobble.h5")
    # output = get_plot("d191018_alpha/optimise_alpha_cut/d2019-05-15_simulations_gamma1deg_wobble_nocut.pdf")
    # title = "Wobble MC (1deg) (No cuts)"
    # process(path, output, title, None)
    # output = get_plot("d191018_alpha/optimise_alpha_cut/d2019-05-15_simulations_gamma1deg_wobble_cut.pdf")
    # title = "Wobble MC (1deg)"
    # process(path, output, title, CUTS_WOBBLE)

    path = get_data(
        "d191018_alpha/extract_alpha_mc/d2019-10-03_simulations_gamma1deg_onoff.h5"
    )
    output = get_plot(
        "d191018_alpha/optimise_alpha_cut/d2019-10-03_simulations_gamma1deg_onoff_nocut.pdf"
    )
    title = "ON/OFF MC (1deg) (No cuts)"
    process(path, output, title, None)
    output = get_plot(
        "d191018_alpha/optimise_alpha_cut/d2019-10-03_simulations_gamma1deg_onoff_softcut.pdf"
    )
    title = "ON/OFF MC (1deg) (Soft cuts)"
    process(path, output, title, CUTS_ONOFF_SOFT)
    output = get_plot(
        "d191018_alpha/optimise_alpha_cut/d2019-10-03_simulations_gamma1deg_onoff_harshcut.pdf"
    )
    title = "ON/OFF MC (1deg) (Harsh cuts)"
    process(path, output, title, CUTS_ONOFF_HARSH)

    path = get_data(
        "d191018_alpha/extract_alpha_mc/d2019-10-03_simulations_gamma1deg_wobble.h5"
    )
    output = get_plot(
        "d191018_alpha/optimise_alpha_cut/d2019-10-03_simulations_gamma1deg_wobble_nocut.pdf"
    )
    title = "Wobble MC (1deg) (No cuts)"
    process(path, output, title, None)
    output = get_plot(
        "d191018_alpha/optimise_alpha_cut/d2019-10-03_simulations_gamma1deg_wobble_cut.pdf"
    )
    title = "Wobble MC (1deg)"
    process(path, output, title, CUTS_WOBBLE)
Пример #4
0
def main():
    path = get_data(
        "d190918_alpha/extract_alpha_mc/d2019-05-15_simulations_gamma1deg_onoff.h5"
    )
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_onoff_nocut.pdf")
    title = "ON/OFF MC (1deg) (No cuts)"
    process(path, output, title, None)
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_onoff_softcut.pdf")
    title = "ON/OFF MC (1deg) (Soft cuts)"
    process(path, output, title, CUTS_ONOFF_SOFT)
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_onoff_harshcut.pdf"
    )
    title = "ON/OFF MC (1deg) (Harsh cuts)"
    process(path, output, title, CUTS_ONOFF_HARSH)

    path = get_data(
        "d190918_alpha/extract_alpha_mc/d2019-05-15_simulations_gamma1deg_wobble.h5"
    )
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_wobble_nocut.pdf")
    title = "Wobble MC (1deg) (No cuts)"
    process(path, output, title, None)
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_wobble_cut.pdf")
    title = "Wobble MC (1deg)"
    process(path, output, title, CUTS_WOBBLE)

    path = get_data(
        "d190918_alpha/extract_alpha_mc/d2019-05-15_simulations_gamma1deg_5off_wobble.h5"
    )
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_5off_wobble_nocut.pdf"
    )
    title = "Wobble MC (1deg) (5 OFF) (No cuts)"
    process(path, output, title, None)
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gamma1deg_5off_wobble_cut.pdf"
    )
    title = "Wobble MC (1deg) (5 OFF)"
    process(path, output, title, CUTS_WOBBLE)

    path = get_data(
        "d190918_alpha/extract_alpha_mc/d2019-05-15_simulations_gammaonly_wobble.h5"
    )
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gammaonly_wobble_nocut.pdf")
    title = "Wobble MC (1deg) (No cuts)"
    process(path, output, title, None)
    output = get_plot(
        "d190918_alpha/mc/d2019-05-15_simulations_gammaonly_wobble_cut.pdf")
    title = "Wobble MC (1deg)"
    process(path, output, title, CUTS_WOBBLE)
Пример #5
0
def main():
    paths = dict(
        self=get_data(
            "d191118_pedestal_temperature/d191118/residuals_self.h5"),
        single_31degree=get_data(
            "d191118_pedestal_temperature/d191118/residuals_single_30.h5"),
        lookup=get_data(
            "d191118_pedestal_temperature/d191118/residuals_lookup.h5"),
        interp=get_data(
            "d191118_pedestal_temperature/d191118/residuals_interp.h5"),
        pchip=get_data(
            "d191118_pedestal_temperature/d191118/residuals_pchip.h5"),
    )

    p_mean = MeanVsTemperature()
    p_std = StdVsTemperature()
    p_relstd = RelativeStdVsTemperature()

    with HDF5Reader(paths['self']) as reader:
        df = reader.read("data")
        df = df.set_index("temperature_r0_primary").sort_index()
        ref_std = df['std'].values

    for label, path in paths.items():
        with HDF5Reader(path) as reader:
            df = reader.read("data")
            df = df.set_index("temperature_r0_primary").sort_index()

        temperature = df.index.values
        mean = df['mean'].values
        std = df['std'].values

        p_mean.plot(temperature, mean, label)
        p_std.plot(temperature, std, label)
        p_relstd.plot(temperature, std, ref_std, label)

    p_mean.save(get_plot(f"d191118_pedestal_temperature/d191118/mean.pdf"))
    p_std.save(get_plot(f"d191118_pedestal_temperature/d191118/std.pdf"))
    p_relstd.save(
        get_plot(f"d191118_pedestal_temperature/d191118/rel_std.pdf"))

    with HDF5Reader(paths['self']) as reader:
        df = reader.read("data")
        df = df.set_index("temperature_r0_chamber").sort_index()
        chamber = df.index.values
        primary = df['temperature_r0_primary'].values

    p_temp = TemperatureComparison()
    p_temp.plot(chamber, primary)
    p_temp.save(get_plot(f"d191118_pedestal_temperature/d191118/temp.pdf"))
Пример #6
0
def main():
    input_path = get_data("d191122_dc_tf/vped/VPED_13deg.h5")
    output_path = get_plot("d191122_dc_tf/vped/VPED_13deg.pdf")
    process(input_path, output_path)

    input_path = get_data("d191122_dc_tf/vped/VPED_23deg.h5")
    output_path = get_plot("d191122_dc_tf/vped/VPED_23deg.pdf")
    process(input_path, output_path)

    input_path = get_data("d191122_dc_tf/vped/VPED_33deg.h5")
    output_path = get_plot("d191122_dc_tf/vped/VPED_33deg.pdf")
    process(input_path, output_path)

    input_path = get_data("d191122_dc_tf/vped/VPED_43deg.h5")
    output_path = get_plot("d191122_dc_tf/vped/VPED_43deg.pdf")
    process(input_path, output_path)

    input_path = get_data("d191122_dc_tf/vped/VPED_23deg.h5")
    output_path = get_plot("d191122_dc_tf/vped/VPED_23deg_sc.pdf")
    process_single_channel(input_path, 8, output_path)

    input_paths = [
        get_data("d191122_dc_tf/vped/VPED_13deg.h5"),
        get_data("d191122_dc_tf/vped/VPED_23deg.h5"),
        get_data("d191122_dc_tf/vped/VPED_33deg.h5"),
        get_data("d191122_dc_tf/vped/VPED_43deg.h5"),
    ]
    output_path = get_plot("d191122_dc_tf/vped/temperature_comparison.pdf")
    process_different_temps(input_paths, 8, output_path)

    input_path = get_data("d191122_dc_tf/vped/VPED_23deg.h5")
    mean_path = get_plot("d191122_dc_tf/vped/VPED_23deg_mean.pdf")
    std_path = get_plot("d191122_dc_tf/vped/VPED_23deg_std.pdf")
    process_mean_std(input_path, mean_path, std_path)
Пример #7
0
def process_file(file):
    name = file.__class__.__name__
    input_path = file.tio_paths[0]
    output_path = get_plot(
        "d190111_trigger_stability/{}/disabled_start.pdf".format(name))
    hv_path = file.hv_path
    process(input_path, output_path, hv_path, np.s_[:100])

    name = file.__class__.__name__
    input_path = file.tio_paths[-1]
    output_path = get_plot(
        "d190111_trigger_stability/{}/disabled_end.pdf".format(name))
    hv_path = file.hv_path
    process(input_path, output_path, hv_path, np.s_[-100:])
def main():
    path = get_astri_2019("astri_db.h5")
    with HDF5Reader(path) as reader:
        ra = reader.read("TCU_ACTUAL_RA")
        dec = reader.read("TCU_ACTUAL_DEC")
        alt = reader.read("TCU_ELACTPOS")
        az = reader.read("TCU_AZACTPOS")

    df = pd.merge(pd.merge(
        ra, dec,
        on='timestamp').rename(columns=dict(value_x="ra", value_y="dec")),
                  pd.merge(alt, az, on='timestamp').rename(
                      columns=dict(value_x="alt", value_y="az")),
                  on='timestamp')

    df = df.query(" (timestamp > '2019-06-12 18:00')"
                  "&(timestamp < '2019-06-13 05:00')")

    embed()

    altaz_frame = AltAz(location=LOCATION, obstime=df['timestamp'].values)
    telescope_pointing = SkyCoord(
        alt=df['alt'].values,
        az=df['az'].values,
        unit='deg',
        frame=altaz_frame,
    )
    telescope_pointing_icrs = telescope_pointing.icrs
    df['ra_calc'] = telescope_pointing_icrs.ra.deg
    df['dec_calc'] = telescope_pointing_icrs.dec.deg

    d_ra = np.arctan2(np.sin(df['ra'] - df['ra_calc']),
                      np.cos(df['ra'] - df['ra_calc']))
    d_dec = np.arctan2(np.sin(df['dec'] - df['dec_calc']),
                       np.cos(df['dec'] - df['dec_calc']))

    p = Plotter()
    p.ax.plot(df['timestamp'], d_ra)
    p.ax.set_xlabel("Timestamp")
    p.ax.set_ylabel("RA_database - RA_calculated (deg)")
    p.fig.autofmt_xdate()
    p.save(get_plot("d190918_alpha/pointing/ra.pdf"))

    p = Plotter()
    p.ax.plot(df['timestamp'], d_dec)
    p.ax.set_xlabel("Timestamp")
    p.ax.set_ylabel("DEC_database - DEC_calculated (deg)")
    p.fig.autofmt_xdate()
    p.save(get_plot("d190918_alpha/pointing/dec.pdf"))
Пример #9
0
def main():
    # path = "/Users/Jason/Downloads/tempdata/alpha/mc/gamma_1deg.h5"
    path = "/Volumes/gct-jason/astri_onsky_archive/d2019-05-15_simulations/gamma_1deg/run1_hillas.h5"

    with HDF5Reader(path) as reader:
        df_hillas = reader.read("data")
        df_source = reader.read("source")
        mapping = reader.get_mapping()

    # mapping = get_clp_mapping_from_version("1.1.0")
    p_image = ImagePlotter(mapping)

    order = np.argsort(df_source['alpha90'])

    with PdfPages(get_plot("d190717_alpha/mc_alpha_test.pdf")) as pdf:
        for index in order:
            row_hillas = df_hillas.iloc[index]
            row_source = df_source.iloc[index]
            cog_x = row_hillas['x']
            cog_y = row_hillas['y']
            length = row_hillas['length']
            width = row_hillas['width']
            psi = row_hillas['psi']
            src_x = row_source['source_x']
            src_y = row_source['source_y']
            alpha90 = row_source['alpha90']

            p_image.update(cog_x, cog_y, length, width, psi, src_x, src_y)
            p_image.ax.set_title(np.rad2deg(alpha90))
            # pdf.savefig(p_image.fig)
            plt.pause(0.3)
Пример #10
0
def plot_dynamic_range(df, nsb, matched_voltage):
    fig, ax = plt.subplots()

    df_gb = df.groupby('expected_illumination_pe').agg(
        ['mean', 'std', 'count'])
    yerr = df_gb['charge_pe']['std'] / np.sqrt(df_gb['charge_pe']['count'])
    ax.errorbar(df_gb.index,
                df_gb['charge_pe']['mean'],
                fmt='.',
                yerr=yerr,
                label="Average")
    # ax.plot(df_gb.index, df_gb['charge_pe']['mean'], ',', label="Average")

    # df_c = df.loc[(df['true_illumination_pe'] < 100) & (df['true_illumination_pe'] > 10)]
    # c = polyfit(df_c['true_illumination_pe'], df_c['charge_pe'], [1])
    # ax.plot(df_gb.index, polyval(df_gb.index, c), label="Fit")
    min_ = df['true_illumination_pe'].min()
    max_ = df['true_illumination_pe'].max()
    ax.plot([min_, max_], [min_, max_], label="1-to-1")

    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlabel("True Illumination (p.e.)")
    ax.set_ylabel("Measured Charge (p.e.)")
    ax.set_title(f"{nsb}MHz {matched_voltage}mV")
    ax.legend(loc='best')

    output_path = get_plot(
        f"d201202_tutorial_material/charge_{nsb}MHz_{matched_voltage}mV.pdf")
    fig.savefig(output_path)
Пример #11
0
def process(file, fitter_class):
    name = file.__class__.__name__
    input_paths = file.dl1_paths
    spe_config = file.spe_config
    poi = file.poi
    output_dir = get_plot(f"d190313_spectra_fitting/{name}")
    fitter_class_name = fitter_class.__name__

    readers = [DL1Reader(path) for path in input_paths]
    n_illuminations = len(readers)
    fitter = fitter_class(n_illuminations, spe_config)

    charges = []
    for reader in readers:
        pixel, charge = reader.select_columns(['pixel', 'charge_cc'])
        if poi != -1:
            charge_p = charge[pixel == poi]
        else:
            charge_p = charge
        charges.append(charge_p)
    fitter.apply(*charges)

    fitx = np.linspace(fitter.range[0], fitter.range[1], 1000)

    p_spe = SPEPlotter()
    p_spe.plot(fitx, fitter)
    p_spe.save(os.path.join(output_dir, f"fit_{fitter_class_name}.pdf"))

    p_spe_table = SPEPlotterTable()
    p_spe_table.plot(fitx, fitter)
    p_spe_table.save(
        os.path.join(output_dir, f"fit_table_{fitter_class_name}.pdf"))
Пример #12
0
def process_file(file):
    name = file.__class__.__name__
    amplitude_path = get_data("d190117_trigger_stability/{}/amplitudes.h5".format(name))
    hv_path = get_data("d190117_trigger_stability/{}/hv.h5".format(name))
    output_dir = get_plot("d190117_trigger_stability/amp_vs_hv/{}".format(name))
    spoi = file.spoi
    process(amplitude_path, hv_path, output_dir, spoi)
def main():
    path = get_data("d190717_alpha/wobble.h5")
    with pd.HDFStore(path, mode='r') as store:
        df = store['data']
        mapping = store['mapping']
        with warnings.catch_warnings():
            warnings.simplefilter('ignore', UserWarning)
            mapping.metadata = store.get_storer('mapping').attrs.metadata

    p_camera = CameraMovie(mapping,
                           get_plot("d190717_alpha/wobble_animation/frames"))
    n_row = df.index.size
    for _, row in tqdm(df.iterrows(), total=n_row):
        timestamp = row['timestamp']
        x_src = row['x_src']
        y_src = row['y_src']
        dl1 = row['dl1']
        r1 = row['r1']
        x_cog = row['x_cog']
        y_cog = row['y_cog']
        psi = row['psi']
        p_camera.set_source_position(x_src, y_src)
        p_camera.set_image(dl1)
        # p_camera.set_alpha_line(x_cog, y_cog, psi)
        p_camera.save_frame()
Пример #14
0
def process(name, tcal_path):
    ped_reader = PedestalArrayReader(tcal_path)
    hits_tcal = np.array(ped_reader.GetHits())
    std_tcal = np.array(ped_reader.GetStdDev())

    mask = (hits_tcal < 6) | np.isnan(std_tcal)
    std_tcal = np.ma.masked_array(std_tcal, mask=mask)

    embed()

    # std_values = std_tcal.compressed()
    # std_pix = std_tcal.mean((2, 3)).ravel()
    std_max_pix = std_tcal.max((2, 3)).ravel()

    # p_hist = Hist()
    # p_hist.plot(std_values)
    # p_hist.save(get_plot(f"d190730_pedestal/plot_from_tcals/hist/{name}.png"))
    #
    # p_ci = CameraImage.from_camera_version("1.1.0")
    # p_ci.image = std_pix
    # p_ci.add_colorbar()
    # p_ci.save(get_plot(f"d190730_pedestal/plot_from_tcals/camera/{name}.png"))

    p_ci = CameraImage.from_camera_version("1.1.0")
    p_ci.image = std_max_pix
    p_ci.add_colorbar()
    p_ci.save(
        get_plot(f"d190730_pedestal/plot_from_tcals/camera_max/{name}.png"))
Пример #15
0
def process(input_path, function):

    pattern = '(.+)(SN\d{4})(.+)'
    reg_exp = re.search(pattern, input_path)
    sn = reg_exp[2]

    name = function.__name__
    output_path = get_data("d181027_tf_generation/alter_tf/{}_{}.tcal".format(
        name, sn))
    plot_path = get_plot("d181027_tf_generation/alter_tf/{}_{}.pdf".format(
        name, sn))

    print("Reading TF: {}".format(input_path))
    reader = TFArrayReader(input_path)
    tf = np.array(reader.GetTF())
    steps = np.array(reader.GetAdcSteps())

    steps, tf = function(steps, tf)

    print("Writing TF: {}".format(output_path))
    rw = CalibReadWriter()
    rw.WriteTfData(output_path, steps.tolist(), tf, True)

    reader = TFArrayReader(output_path)
    tf = np.array(reader.GetTF())
    steps = np.array(reader.GetAdcSteps())

    p_tf = TFPlot()
    p_tf.plot(steps, tf)
    p_tf.save(plot_path)
Пример #16
0
def main():
    paths = dict(
        self=get_data("d191118_pedestal_temperature/d191118/residuals_self.h5"),
        single_31degree=get_data("d191118_pedestal_temperature/d191118/residuals_single_30.h5"),
        lookup=get_data("d191118_pedestal_temperature/d191118/residuals_lookup.h5"),
        interp=get_data("d191118_pedestal_temperature/d191118/residuals_interp.h5"),
        pchip=get_data("d191118_pedestal_temperature/d191118/residuals_pchip.h5"),
    )

    p_hist = dict()

    for label, path in paths.items():
        with HDF5Reader(path) as reader:
            df = reader.read("data")
            df = df.set_index("temperature_r0_primary").sort_index()

        for temperature, row in df.iterrows():
            hist = row['hist']
            edges = row['edges']
            mean = row['mean']
            std = row['std']

            if temperature not in p_hist:
                p_hist[temperature] = HistPlot()
                p_hist[temperature].ax.set_title(f"TM Primary Temperature = {temperature:.2f} °C")

            p_hist[temperature].plot(hist, edges, mean, std, label)


    for temperature, plot in p_hist.items():
        plot.save(get_plot(f"d191118_pedestal_temperature/d191118/hist/T{temperature:.2f}.pdf"))
Пример #17
0
def main():
    paths = [
        "/Volumes/gct-jason/astri_onsky_archive/d2019-05-15_simulations/proton/run1_dl1.h5",
    ]

    df_list = []

    for ipath, path in enumerate(paths):
        with DL1Reader(path) as reader:
            n_events = reader.get_metadata()['n_events']
            mapping = reader.get_mapping()
            geom = get_ctapipe_camera_geometry(mapping, plate_scale=37.56e-3)

            desc = "Looping over events"
            it = reader.iterate_over_events()
            for df in tqdm(it, total=n_events, desc=desc):
                iev = df['iev'].values[0]

                image = df['photons'].values
                time = df['pulse_time'].values

                mask = obtain_cleaning_mask(geom, image, time)
                if not mask.any():
                    continue

                image_m = image[mask]
                time_m = time[mask]
                geom_m = geom[mask]

                try:
                    hillas = hillas_parameters(geom_m, image_m)
                except HillasParameterizationError:
                    continue

                # timing_parameters(geom_m, image_m, time_m, hillas)

                gt0 = image_m > 0
                pix_x = geom_m.pix_x[gt0]
                pix_y = geom_m.pix_y[gt0]
                peakpos = time_m[gt0]
                intensity = image_m[gt0]

                longi, trans = camera_to_shower_coordinates(
                    pix_x, pix_y, hillas.x, hillas.y, hillas.psi)
                longi = longi.value
                trans = trans.value

                # df_list.append(pd.DataFrame(dict(
                #     ipath=ipath,
                #     iev=iev,
                #     longi=longi,
                #     peakpos=peakpos,
                # )))

                p_relation = RelationPlotter()
                p_relation.plot(longi, peakpos, intensity)
                p_relation.save(
                    get_plot(
                        f"d190524_time_gradient/relation/i{ipath}_e{iev}.pdf"))
def process_file(file):
    name = file.__class__.__name__
    input_path = get_data(
        "d181206_pedestal_investigation/cell_info/{}.h5".format(name))
    output_path = get_plot(
        "d181206_pedestal_investigation/cell_adc_vs_position/{}/{}.pdf".format(
            name, "{}"))
    process(input_path, output_path)
Пример #19
0
def main():
    with HDF5Reader(get_data("d190730_pedestal/tcal_std.h5")) as r:
        df = r.read("data").iloc[2:]

    p_std = ComparisonPlotter()
    p_std.plot(df['name'].values, df['mean'].values, df['std'].values,
               df['max'].values)
    p_std.save(get_plot("d190730_pedestal/tcal_std.pdf"))
Пример #20
0
def main():
    path = get_data(f"d191118_pedestal_temperature/d191118/adc_vs_temperature.h5")

    with HDF5Reader(path) as reader:
        df = reader.read("data")
        df = df.set_index("temperature").sort_index()

    temperature = df.index.values
    delta_mean = df['delta_mean'].values
    delta_std = df['delta_std'].values
    delta_channel_mean = df['delta_channel_mean'].values
    delta_channel_std = df['delta_channel_std'].values
    spead_mean = df['spread_mean'].values
    spread_std = df['spread_std'].values

    p_delta = ValueVsTemp()
    p_delta.plot(temperature, delta_mean, delta_std, "TM")
    p_delta.plot(temperature, delta_channel_mean, delta_channel_std, "Channel 0")
    p_delta.save(get_plot(f"d191118_pedestal_temperature/d191118/delta_vs_temp.pdf"))

    # p_delta = ValueVsTemp()
    # p_delta.plot(temperature, delta_channel_mean, delta_channel_std)
    # p_delta.save(get_plot(f"d191118_pedestal_temperature/d191118/delta_channel_vs_temp.pdf"))

    p_delta = SpreadVsTemp()
    p_delta.plot(temperature, spead_mean, spread_std)
    p_delta.save(get_plot(f"d191118_pedestal_temperature/d191118/spread_vs_temp.pdf"))

    paths = dict(
        d191118_60hz=get_data("d191118_pedestal_temperature/d191118/adc_vs_temperature.h5"),
        d191119_600hz=get_data("d191118_pedestal_temperature/d191119/adc_vs_temperature.h5"),
        d191120_200hz=get_data("d191118_pedestal_temperature/d191120/adc_vs_temperature.h5"),
    )
    p_delta = ValueVsTemp()
    for label, path in paths.items():
        with HDF5Reader(path) as reader:
            df = reader.read("data")
            df = df.set_index("temperature").sort_index()

        temperature = df.index.values
        delta_mean = df['delta_mean'].values
        delta_std = df['delta_std'].values

        p_delta.plot(temperature, delta_mean, delta_std, label)
    p_delta.save(get_plot(f"d191118_pedestal_temperature/delta_vs_temp_vs_day.pdf"))
Пример #21
0
def process_file(file):
    name = file.__class__.__name__
    input_path = get_data(
        "d190104_vped_pedestal_steps/cell_info/{}.h5".format(name))
    output_dir = get_plot(
        "d190104_vped_pedestal_steps/steps_vs_vped/{}".format(name))
    coi = 12

    process(input_path, output_dir, coi)
Пример #22
0
def main():
    x = np.linspace(-2, 15, 300000, dtype=np.double)
    y = mapm(x, **kwargs)

    p = xyPlotter()
    p.plot(x, y, kwargs)
    p.ax.set_xlabel("Charge (AU)")
    p.ax.set_ylabel("Counts")
    p.save(get_plot("d190209_spectra/hist.pdf"))
Пример #23
0
def main():
    path = "/Volumes/gct-jason/astri_onsky_archive/d2019-10-03_simulations/gamma_1deg/run1_dl1.h5"
    # path = "/Volumes/gct-jason/astri_onsky_archive/d2019-05-15_simulations/gamma_1deg/run1_dl1_old.h5"
    reader = DL1Reader(path)
    df = reader.load_entire_table()
    image = df.groupby(['pixel']).sum()['photons']

    ci = CameraImage.from_mapping(reader.mapping)
    ci.image = image
    ci.save(get_plot("d190717_alpha/true_images.pdf"))
Пример #24
0
 def __init__(self, **kwargs):
     super().__init__(**kwargs)
     self.dl1_path = "/Volumes/gct-jason/sim_telarray/d180907_illumination_profile/Run43489_dl1.h5"
     self.illumination_profile_path = get_data(
         "d181021_charge_resolution/illumination_profile/d180907_MC.h5")
     self.plot_dir = get_plot(
         "d181021_charge_resolution/illumination_profile/d180907_MC")
     self.angular_response_path = get_data(
         "d181021_charge_resolution/illumination_profile/transmission_pmma_vs_theta_20150422.dat"
     )
Пример #25
0
def main():
    with HDF5Reader(get_data("d190730_pedestal/ped.h5")) as reader:
        df = reader.read('data')

    df = setup_cells(df)
    std = df.groupby(['fblock', 'fbpisam'])['adc'].std()

    print(f"Min hits: {count.min()}")

    p_count = LookupTable()
    p_count.plot(count, "Counts")
    p_count.save(get_plot("d190730_pedestal/count.pdf"))

    p_mean = LookupTable()
    p_mean.plot(mean, "Mean")
    p_mean.save(get_plot("d190730_pedestal/mean.pdf"))

    p_std = LookupTable()
    p_std.plot(std, "Stddev")
    p_std.save(get_plot("d190730_pedestal/std.pdf"))
def main():
    before_tfs = dict(
        before_25deg=get_tf(
            get_data("d191128_pedestal_lab/dc_tf/before_25deg.h5")),
        before_35deg=get_tf(
            get_data("d191128_pedestal_lab/dc_tf/before_35deg.h5")),
    )
    after_tfs = dict(
        c440pF_25deg=get_tf(
            get_data("d191128_pedestal_lab/dc_tf/after_25deg.h5")),
        c440pF_25deg_2=get_tf(
            get_data("d191128_pedestal_lab/dc_tf/after_25deg_3.h5")),
        c440pF_35deg=get_tf(
            get_data("d191128_pedestal_lab/dc_tf/after_35deg.h5")),
        c440pF_35deg_2=get_tf(
            get_data("d191128_pedestal_lab/dc_tf/after_35deg_3.h5")),
    )
    # after_tfs = dict(
    #     c100pF_25deg=get_tf(get_data("d191128_pedestal_lab/dc_tf/100pF_25deg.h5")),
    #     c100pF_1k_25deg=get_tf(get_data("d191128_pedestal_lab/dc_tf/100pF_1k_25deg.h5")),
    #     c100pF_35deg=get_tf(get_data("d191128_pedestal_lab/dc_tf/100pF_35deg.h5")),
    # )
    # after_tfs = dict(
    #     c200pF_25deg=get_tf(get_data("d191128_pedestal_lab/dc_tf/200pF_25deg.h5")),
    #     c200pF_35deg=get_tf(get_data("d191128_pedestal_lab/dc_tf/200pF_35deg.h5")),
    # )
    channel = 8
    cell = 0
    title = f"BEFORE Capacitor Change, Channel = {channel}, Cell = {cell}"
    output_path = get_plot("d191128_pedestal_lab/dc_tf/before.pdf")
    plot_comparison(before_tfs, channel, cell, title, output_path)
    output_path = get_plot("d191128_pedestal_lab/dc_tf/ref_before.pdf")
    plot_comparison_ref(before_tfs, channel, cell, title, output_path)
    title = f"AFTER Capacitor Change, Channel = {channel}, Cell = {cell}"
    output_path = get_plot("d191128_pedestal_lab/dc_tf/after.pdf")
    plot_comparison(after_tfs, channel, cell, title, output_path)
    output_path = get_plot("d191128_pedestal_lab/dc_tf/ref_after.pdf")
    plot_comparison_ref(after_tfs, channel, cell, title, output_path)
    output_path = get_plot("d191128_pedestal_lab/dc_tf/ref_stat_after.pdf")
    plot_comparison_ref_stat(after_tfs, "", output_path)
Пример #27
0
def main():
    sql = ASTRISQLQuerier()

    p_uptime = Uptime()

    start = pd.Timestamp("2019-04-29 00:00")
    end = pd.Timestamp("2019-05-13 00:00")
    p_uptime.plot(sql, start, end, None)

    start = pd.Timestamp("2019-06-10 00:00")
    end = pd.Timestamp("2019-06-16 00:00")
    p_uptime.plot(sql, start, end, "ASTRI Pointing Database Uptime")

    p_uptime.save(get_plot("d191009_astri_db_uptime/campaign_all.pdf"))
Пример #28
0
def main():
    path = get_data("d190507_check_amplitude_calib/data.h5")
    output_path = get_plot("d190507_check_amplitude_calib/plot.pdf")
    with HDF5Reader(path) as reader:
        df = reader.read('data')

    df = df.sort_values('t_cpu')
    datetime = df['t_cpu'].values
    nudge = df['nudge'].values
    temperature = df['temperature'].values

    p = Plot()
    p.plot(datetime, nudge, temperature)
    p.save(output_path)
Пример #29
0
def main():
    d_list = []
    for file in all_files[2:]:
        adict = np.load(file.reduced_residuals)
        d_list.append(
            dict(
                name=file.name,
                mean=adict['mean'],
                std=adict['std'],
            ))
    df = pd.DataFrame(d_list)

    p_std = ComparisonPlotter()
    p_std.plot(df['name'].values, df['mean'].values, df['std'].values)
    p_std.save(get_plot("d190730_pedestal/residuals.pdf"))
Пример #30
0
def plot_charge_resolution(df_cr, poi, nsb, matched_voltage):
    df = df_cr.loc[df_cr['pixel'] == poi]

    x = df['true']
    y = df['charge_res']
    yerr = (1 / np.sqrt(df['n'])) / x

    cr = ChargeResolutionPlotter()
    cr._plot(x, y, yerr, label="CR")
    cr.plot_poisson(x)
    cr.plot_requirement(x)

    output_path = get_plot(
        f"d201202_tutorial_material/cr_{nsb}MHz_{matched_voltage}mV.pdf")
    cr.save(output_path)