Пример #1
0
def main(margin):
  mu = 0.5
  contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

  contacts[2].mu = 0.5

  polyhedron = stab.StabilityPolygon(200, dimension=3, radius=1.5, robust_sphere=False)
  polyhedron.contacts = contacts

  polygon = stab.StabilityPolygon(200, dimension=2, radius=1.5)
  polygon.contacts = contacts

  shape = [
              np.array([[-1., 0, 0]]).T,
              np.array([[1., 0, 0]]).T,
              np.array([[0, 1., 0]]).T,
              np.array([[0, -1., 0]]).T,
              np.array([[0, 0., 1]]).T,
              np.array([[0, 0., -1]]).T
          ]

  polytope = [margin*s for s in shape]

  polyhedron.gravity_envelope = polytope
  polyhedron.compute(stab.Mode.iteration, epsilon=2e-3, maxIter=10, solver='qhull',
                     record_anim=False, plot_init=False,
                     plot_step=False, plot_final=True)
 def create_polyhedron(self, contacts):
     self.handle = None
     self.nr_iter = 0
     try:
         self.polyhedron = stabilipy.StabilityPolygon(
             robot.mass, dimension=3, radius=1.5)
         stabilipy_contacts = []
         for contact in contacts:
             hmatrix = matrixFromPose(contact.pose)
             X, Y = contact.shape
             displacements = [array([[X, Y, 0]]).T,
                              array([[-X, Y, 0]]).T,
                              array([[-X, -Y, 0]]).T,
                              array([[X, -Y, 0]]).T]
             for disp in displacements:
                 stabilipy_contacts.append(
                     stabilipy.Contact(
                         contact.friction,
                         hmatrix[:3, 3:] + hmatrix[:3, :3].dot(disp),
                         hmatrix[:3, 2:3]))
         self.polyhedron.contacts = stabilipy_contacts
         self.polyhedron.select_solver(self.method)
         self.polyhedron.make_problem()
         self.polyhedron.init_algo()
         self.polyhedron.build_polys()
         vertices = self.polyhedron.polyhedron()
         self.handle = draw_polytope(
             [(x[0], x[1], x[2]) for x in vertices])
     except Exception as e:
         print("SupportPolyhedronDrawer: {}".format(e))
Пример #3
0
def main():
    mu = 0.5
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    contacts[2].mu = 0.5

    polyhedron = stab.StabilityPolygon(200, dimension=2, radius=1.5)
    polyhedron.contacts = contacts

    polyhedron.select_solver('plain')
    polyhedron.make_problem()
    polyhedron.init_algo()
    polyhedron.build_polys()

    points = np.random.random((100, 2)) - 0.5

    truths = np.array([
        polyhedron.sample(point, plot_final=False, plot_step=False)
        for point in points
    ])

    polyhedron.plot()

    polyhedron.ax.plot(*list(zip(*points[truths, :])),
                       linestyle="none",
                       marker="*",
                       markerfacecolor="green")
    polyhedron.ax.plot(*list(zip(*points[~truths, :])),
                       linestyle="none",
                       marker="x",
                       markerfacecolor="red")

    polyhedron.show()
Пример #4
0
def main():
    #normals = map(stab.normalize,
    #              [np.array([[-0.7, 0, 1]]).T,
    #               np.array([[0.1, 0.5, 1]]).T,
    #               np.array([[0.5, -0.5, 1]]).T])

    #pos = [np.array([[0, 0, 0]]).T,
    #       np.array([[0, 1, 0]]).T,
    #       np.array([[1, 0, 0.2]]).T]

    #normals = map(stab.normalize,
    #              [np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T])

    #pos = [np.array([[0.1, 0.155, -0.105]]).T,
    #       np.array([[-0.07, 0.155, -0.105]]).T,
    #       np.array([[-0.07, 0.055, -0.105]]).T,
    #       np.array([[0.1, 0.055, -0.105]]).T]

    #normals = [np.array([[0, 0, 1]]).T]*3

    normals = list(
        map(stab.normalize, [
            np.array([[0.5, 0.0, 1]]).T,
            np.array([[0.5, 0.0, 1]]).T,
            np.array([[0.0, 0.0, 1]]).T
        ]))

    pos = [
        np.array([[0.1, -0.2, 0]]).T,
        np.array([[-0.1, -0.2, 0]]).T,
        np.array([[0.2, 0, 1]]).T
    ]

    bar = sum(pos) / float(len(pos))
    pos = [p - bar for p in pos]

    mu = 0.5
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    poly = stab.StabilityPolygon(60, dimension=2)
    poly.contacts = contacts

    poly.compute(stab.Mode.iteration,
                 epsilon=2e-3,
                 maxIter=10,
                 solver='plain',
                 record_anim=False,
                 plot_step=True,
                 plot_final=False)
Пример #5
0
def main():
    #normals = map(stab.normalize,
    #              [np.array([[-0.7, 0, 1]]).T,
    #               np.array([[0.1, 0.5, 1]]).T,
    #               np.array([[0.5, -0.5, 1]]).T])

    #pos = [np.array([[0, 0, 0]]).T,
    #       np.array([[0, 1, 0]]).T,
    #       np.array([[1, 0, 0.2]]).T]

    #normals = map(stab.normalize,
    #              [np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T])

    #pos = [np.array([[0.1, 0.155, -0.105]]).T,
    #       np.array([[-0.07, 0.155, -0.105]]).T,
    #       np.array([[-0.07, 0.055, -0.105]]).T,
    #       np.array([[0.1, 0.055, -0.105]]).T]

    #normals = [np.array([[0, 0, 1]]).T]*3

    normals = list(
        map(stab.normalize, [
            np.array([[-1, 0.0, 0]]).T,
            np.array([[1, 0.0, 0]]).T,
            np.array([[0.0, 1., 0]]).T
        ]))

    pos = [
        np.array([[1., 0., 0.]]).T,
        np.array([[-1., 0.0, 0.]]).T,
        np.array([[0., -1., 0.]]).T
    ]

    bar = sum(pos) / float(len(pos))
    pos = [p - bar for p in pos]

    mu = 0.7
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    poly = stab.StabilityPolygon(60)
    poly.contacts = contacts

    poly.compute(3e-2, True, False, False, True)
def main():
  global pos, normals

  mu = 0.7
  contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

  poly_3d = stab.StabilityPolygon(100, dimension=3)
  poly_3d.contacts = contacts

  poly_2d = stab.StabilityPolygon(100, dimension=2)
  poly_2d.contacts = contacts

  polys = [poly_2d, poly_3d]

  point = np.array([[0.36510907, 0.31419711, 0.73607441]]).T

  for poly in polys:
    poly.addTorqueConstraint(contacts[-4:-2],
                             point,
                             10*np.ones((3, 1)))

  gravities = np.linspace(0, 2, 10)
  shape = [
              np.array([[-1., 0, 0]]).T,
              np.array([[1., 0, 0]]).T,
              np.array([[0, 1., 0]]).T,
              np.array([[0, -1., 0]]).T
          ]

  for gravity in gravities:
    for poly in polys:
      poly.gravity_envelope = [gravity*s for s in shape]
      poly.compute(stab.Mode.best, maxIter=50, epsilon=1e-2, solver='cdd',
                   plot_init=False, plot_final=False, plot_step=False,
                   plot_direction=False, plot_error=False)
      filename = os.path.join('different_gravities', 'g_{}_{}d'.format(gravity, poly.dimension))
      poly.save_polyhedron(filename)
      poly.plot()
    plt.show()
  return poly
Пример #7
0
def main():
    global pos, normals

    #bar = sum(pos)/float(len(pos))
    #pos = [p-bar for p in pos]

    mu = 0.7
    frame_dir = 'interp_vs_cstr'
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    poly = stab.StabilityPolygon(100, dimension=2, radius=100., force_lim=1.)
    #poly.contacts = contacts

    #poly.reset_fig()
    #poly.plot_contacts()
    #poly.show()

    #poly.make_problem()
    #poly.check_sizes()

    poly.contacts = contacts[0:4]
    poly.contacts += [stab.Contact(mu, p, n) for p, n in zip(*lfc())]

    poly.compute(stab.Mode.best,
                 maxIter=50,
                 epsilon=1e-2,
                 solver='plain',
                 plot_init=False,
                 plot_final=False,
                 plot_step=False,
                 plot_direction=False,
                 plot_error=False)

    p1 = poly.polygon()

    poly.reset()
    poly.contacts = contacts
    poly.contacts += [stab.Contact(mu, p, n) for p, n in zip(*lfc())]

    for k in range(4, 8):
        poly.addForceConstraint(contacts[k:k + 1], 1.0)

    point = np.array([[0.36510907, 0.31419711, 0.73607441]]).T

    #poly.addTorqueConstraint(contacts[-4:-2],
    #                         point,
    #                         10*np.ones((3, 1)))

    #gravities = np.linspace(0, 2, 10)
    #shape = [
    #            np.array([[-1., 0, 0]]).T,
    #            np.array([[1., 0, 0]]).T,
    #            np.array([[0, 1., 0]]).T,
    #            np.array([[0, -1., 0]]).T
    #        ]

    #for gravity in gravities:
    #  poly.gravity_envelope = [gravity*s for s in shape]

    poly.compute(stab.Mode.best,
                 maxIter=50,
                 epsilon=1e-2,
                 solver='plain',
                 plot_init=False,
                 plot_final=False,
                 plot_step=False,
                 plot_direction=False,
                 plot_error=False)

    p0 = poly.polygon()
    interp = shapes.PolygonInterpolator(p0, p1)

    for i in range(3):
        x, y = list(
            zip(*[[c.r[0], c.r[1]] for c in poly.contacts[4 * i:4 * (i + 1)]]))
        print(x)
        x, y = list(x), list(y)
        x.append(x[0])
        y.append(y[0])
        plt.plot(x, y)
        with open(os.path.join(frame_dir, 'contact_{}'.format(i)), 'w') as f:
            for xi, yi in zip(x, y):
                f.write('{} {}{}'.format(xi[0], yi[0], os.linesep))

    plt.plot(*p1.exterior.coords.xy)
    plt.plot(*p0.exterior.coords.xy)
    plt.show()

    #poly.addTorqueConstraint(contacts[-2:],
    #                         point,
    #                         10*np.ones((3, 1)))
    #poly.reset_fig()
    #poly.plot_contacts()

    A = np.array(p0.exterior.coords)
    np.savetxt(os.path.join(frame_dir, 'p0'), A)
    A = np.array(p1.exterior.coords)
    np.savetxt(os.path.join(frame_dir, 'p1'), A)

    f = open('top_lel.txt', 'w')
    nr_tests = 10
    polygons = []
    for i in range(nr_tests + 1):
        poly.clearConstraints()
        cur_percent = (nr_tests - i) / nr_tests
        for k in range(4, 8):
            poly.addForceConstraint(contacts[k:k + 1], cur_percent)

        poly.compute(stab.Mode.best,
                     maxIter=50,
                     epsilon=1e-2,
                     solver='plain',
                     plot_init=False,
                     plot_final=False,
                     plot_step=False,
                     plot_direction=False,
                     plot_error=False)

        cur_p = poly.polygon()

        fname = 'cstr_{}'.format(nr_tests - i)
        A = np.array(cur_p.exterior.coords)
        np.savetxt(os.path.join(frame_dir, fname), A)

        cur_area = cur_p.area
        max_j = 1.
        min_j = 0.
        j = 0.5

        pi = interp.fast_interpolate(j)
        interp_area = pi.area

        nr_iter = 100
        while abs(cur_area - interp_area) > 1e-12 and nr_iter < 1000:
            if cur_area > interp_area:
                max_j = j
                j = (min_j + j) / 2
            else:
                min_j = j
                j = (max_j + j) / 2
            pi = interp.fast_interpolate(j)
            interp_area = pi.area
            #print cur_area - interp_area, max_j, j, min_j
            nr_iter += 1
        f.write("{} {} {} {}\n".format(cur_percent, j, cur_area, interp_area))

        fname = 'interp_{}'.format(nr_tests - i)
        A = np.array(pi.exterior.coords)
        np.savetxt(os.path.join(frame_dir, fname), A)

        polygons.append(A)

        #To watch the log file grow
        f.flush()
        print(cur_area - interp_area)

        #poly.plot()
        #poly.ax.plot(*pi.exterior.coords.xy)
        #poly.show()

        #plt.plot(*pi.exterior.coords.xy)
        #plt.show()
    f.close()

    poly.reset_fig()
    poly.plot_contacts()

    for mat in polygons:
        x, y = list(zip(*mat))
        poly.ax.plot(x, y)
    poly.show()
    ##A = np.vstack([p.T for p in poly.points])
    #print zip(*A)
    #qhull = ConvexHull(A)
    #coords, tri = [c for c in qhull.points.T], qhull.simplices

    #dirs = np.vstack(poly.directions[:-1])
    #offsets = np.vstack(poly.offsets[:-1])
    #mat = np.hstack([offsets, -dirs])
    #out = cdd.Matrix(mat, number_type='fraction')
    #print np.array(out)
    #out.rep_type = cdd.RepType.INEQUALITY
    #polyhedron = cdd.Polyhedron(out)
    #gen = np.array(polyhedron.get_generators())

    #f = np.vectorize(lambda x: Fraction(str(x)).limit_denominator(1000))
    #ppl_poly = PPL_Poly(hrep=f(mat))
    #p3 = ppl_poly.vrep()[:, 1:]
    #qhull = ConvexHull(p3)
    #coords3, tri3 = [c for c in qhull.points.T], qhull.simplices

    #print np.array(out).shape
    #print np.array(poly.outer).shape
    ##print np.array(out) - np.vstack([np.array(poly.outer), np.zeros((1, 4))])

    #p2 = gen[:, 1:]
    #qhull = ConvexHull(p2)
    #coords2, tri2 = [c for c in qhull.points.T], qhull.simplices

    #plt.close("all")
    #fig = plt.figure()
    #ax = fig.add_subplot('111', aspect='equal', projection='3d')
    #x, y, z = zip(*A)
    #ax.scatter(x, y, z)
    #x, y, z = zip(*p3)
    #ax.scatter(x, y, z, color='b', marker='^', s=120.)

    #ax.plot_trisurf(*coords, triangles=tri, color='r', alpha=0.5)

    #ax.plot_trisurf(*coords2, triangles=tri2, color='b', alpha=0.1)

    #ax.plot_trisurf(*coords3, triangles=tri3, color='g', alpha=0.1)

    #plt.show()

    return poly
Пример #8
0
def main():
  global pos, normals

  #bar = sum(pos)/float(len(pos))
  #pos = [p-bar for p in pos]

  mu = 0.7
  contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]
  #right_foot_contacts = contacts[0:4]
  gripper_contacts = contacts[4:]

  assert(len(gripper_contacts) == 4)

  left_foot_contacts = [stab.Contact(mu, p, n) for p, n in zip(*lfcontact.contacts())]

  poly = stab.StabilityPolygon(100, dimension=2)
  poly.contacts = left_foot_contacts + gripper_contacts

  #poly.reset_fig()
  #poly.plot_contacts()
  #poly.show()

  #poly.make_problem()
  #poly.check_sizes()


  #poly.contacts = contacts[0:4]

  #poly.compute(stab.Mode.best, maxIter=50, epsilon=1e-2, solver='cdd',
  #             plot_init=False, plot_final=False, plot_step=False,
  #             plot_direction=False, plot_error=False)

  #p1 = poly.polygon()

  #poly.contacts = contacts

  point = np.array([[0.36510907, 0.31419711, 0.73607441]]).T

  poly.addTorqueConstraint(poly.contacts[4:-2],
                           point,
                           np.ones((3, 1)),
                           np.zeros((3, 1)))

  poly.compute(stab.Mode.best, maxIter=50, epsilon=1e-2, solver='plain',
               plot_init=False, plot_final=True, plot_step=False,
               plot_direction=False, plot_error=False)
  print("Print area : ", poly.volume_convex(poly.inner))

  poly.contacts = contacts + left_foot_contacts
  poly.torque_constraints = []

  poly.addTorqueConstraint(contacts[4:8],
                           point,
                           3*np.ones((3, 1)),
                           2*np.ones((3, 1)))

  poly.compute(stab.Mode.best, maxIter=50, epsilon=1e-2, solver='cdd',
               plot_init=False, plot_final=True, plot_step=False,
               plot_direction=False, plot_error=False)
  print("Print area : ", poly.volume_convex(poly.inner))

  #p0 = poly.polygon()
  #interp = shapes.PolygonInterpolator(p0, p1)

  #poly.addTorqueConstraint(contacts[-2:],
  #                         point,
  #                         10*np.ones((3, 1)))
  #poly.reset_fig()
  #poly.plot_contacts()

  #f = open('top_lel.txt', 'w')
  #for i in range(101):
  #  poly.forces_constraints = []
  #  for k in range(4, 8):
  #    poly.addForceConstraint(contacts[k:k+1], (100-i)*0.01)

  #  poly.compute(stab.Mode.best, maxIter=50, epsilon=1e-2, solver='cdd',
  #               plot_init=False, plot_final=False, plot_step=False,
  #               plot_direction=False, plot_error=False)

  #  cur_p = poly.polygon()
  #  cur_area = cur_p.area
  #  max_j = 1.
  #  min_j = 0.
  #  j = 0.5

  #  pi = interp.fast_interpolate(j)
  #  interp_area = pi.area

  #  nr_iter = 0
  #  while abs(cur_area - interp_area) > 1e-3 and nr_iter < 200:
  #    if cur_area > interp_area:
  #      max_j = j
  #      j = (min_j+j)/2
  #    else:
  #      min_j = j
  #      j = (max_j+j)/2
  #    pi = interp.fast_interpolate(j)
  #    interp_area = pi.area
  #    #print cur_area - interp_area, max_j, j, min_j
  #    nr_iter += 1
  #  f.write("{},{}\n".format((100-i)*0.01, j))
  #  #poly.plot()
  #  #poly.ax.plot(*pi.exterior.coords.xy)
  #  #poly.show()
  #f.close()

  ##A = np.vstack([p.T for p in poly.points])
  #print zip(*A)
  #qhull = ConvexHull(A)
  #coords, tri = [c for c in qhull.points.T], qhull.simplices

  #dirs = np.vstack(poly.directions[:-1])
  #offsets = np.vstack(poly.offsets[:-1])
  #mat = np.hstack([offsets, -dirs])
  #out = cdd.Matrix(mat, number_type='fraction')
  #print np.array(out)
  #out.rep_type = cdd.RepType.INEQUALITY
  #polyhedron = cdd.Polyhedron(out)
  #gen = np.array(polyhedron.get_generators())

  #f = np.vectorize(lambda x: Fraction(str(x)).limit_denominator(1000))
  #ppl_poly = PPL_Poly(hrep=f(mat))
  #p3 = ppl_poly.vrep()[:, 1:]
  #qhull = ConvexHull(p3)
  #coords3, tri3 = [c for c in qhull.points.T], qhull.simplices

  #print np.array(out).shape
  #print np.array(poly.outer).shape
  ##print np.array(out) - np.vstack([np.array(poly.outer), np.zeros((1, 4))])

  #p2 = gen[:, 1:]
  #qhull = ConvexHull(p2)
  #coords2, tri2 = [c for c in qhull.points.T], qhull.simplices

  #plt.close("all")
  #fig = plt.figure()
  #ax = fig.add_subplot('111', aspect='equal', projection='3d')
  #x, y, z = zip(*A)
  #ax.scatter(x, y, z)
  #x, y, z = zip(*p3)
  #ax.scatter(x, y, z, color='b', marker='^', s=120.)

  #ax.plot_trisurf(*coords, triangles=tri, color='r', alpha=0.5)

  #ax.plot_trisurf(*coords2, triangles=tri2, color='b', alpha=0.1)

  #ax.plot_trisurf(*coords3, triangles=tri3, color='g', alpha=0.1)

  #plt.show()

  return poly
Пример #9
0
def main():
  global pos, normals

  #bar = sum(pos)/float(len(pos))
  #pos = [p-bar for p in pos]

  offset = np.array([[0.0], [0.], [0.]])
  mu = 0.5
  contacts = [stab.Contact(mu, offset+p, n) for p, n in zip(pos, normals)]

  poly = stab.StabilityPolygon(60, dimension=2, radius=100.)
  poly.printer.verbosity = stab.Verbosity.none
  poly.contacts = contacts

  point = offset+np.array([[0.36510907, 0.31419711, 0.73607441]]).T

  poly.make_problem()
  poly.reset_fig()
  poly.plot_contacts()
  poly.ax.plot(point[0], point[1], point[2], 'o', markersize=10)
  poly.show()

  sol = 'cdd'

  poly.compute(stab.Mode.iteration, maxIter=50, epsilon=2e-3,
               solver=sol, plot_error=False, plot_step=False,
               plot_init=False, plot_final=False)

  unconstrained = poly.polyhedron()

  bar1 = sum([c.r for c in poly.contacts[0:4]])/4
  bar2 = sum([c.r for c in poly.contacts[4:8]])/4

  #Foot
  poly.addDistConstraint(bar1, 1.5)

  print(bar1)
  #Hand
  poly.addDistConstraint(bar2, 1.5)

  poly.compute(stab.Mode.iteration, maxIter=50, epsilon=2e-3,
               solver=sol, plot_error=False, plot_step=False,
               plot_init=False, plot_final=False)

  dist_constrained = poly.polyhedron()

  poly.addTorqueConstraint(contacts[-4:-2],
                           point,
                           1*np.ones((3, 1)))

  poly.addTorqueConstraint(contacts[-2:],
                           point,
                           1*np.ones((3, 1)))

  poly.compute(stab.Mode.iteration, maxIter=50, epsilon=2e-3,
               solver=sol, plot_error=False, plot_step=False,
               plot_init=False, plot_final=False)

  all_constrained = poly.polyhedron()

  def envelope(points):
    hull = ConvexHull(points)
    exterior = hull.points[hull.vertices, :]
    exterior = np.vstack([exterior, hull.points[hull.vertices[0], :]])
    return exterior

  poly.reset_fig()
  poly.plot_contacts()

  unconstrained = envelope(unconstrained)
  poly.ax.plot(unconstrained[:, 0], unconstrained[:, 1], label="Unconstrained")
  dist_constrained = envelope(dist_constrained)
  poly.ax.plot(dist_constrained[:, 0], dist_constrained[:, 1], label="Dist constraint")
  all_constrained = envelope(all_constrained)
  poly.ax.plot(all_constrained[:, 0], all_constrained[:, 1], label="Dist + force constrained")
  plt.legend()
  plt.show()

  if sol == 'plain':
    ineq = [l/abs(l[0]) for l in poly.inner.inequalities]
    print(np.vstack(ineq))
  elif sol == 'cdd':
    poly = cdd.Polyhedron(poly.inner)
    print(poly.get_inequalities())
  return poly
def main():
    global pos, normals

    #bar = sum(pos)/float(len(pos))
    #pos = [p-bar for p in pos]

    mu = 0.2
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    poly = stab.StabilityPolygon(60, dimension=2, force_lim=1000.)

    poly.contacts = contacts[0:8]

    for c in poly.contacts[0:4]:
        c.r[2] = 0.
        c.n = np.array([[0.4], [0.4], [np.sqrt(1 - 2 * (0.4**2))]])
        #c.n = np.array([[0., 1., 0.]]).T

    for c in poly.contacts[4:]:
        c.r[2] = 0.
        #c.n = np.array([[0., 0., 1.]]).T
        c.n = np.array([[-0.4], [-0.4], [np.sqrt(1 - 2 * (0.4**2))]])

    poly.reset_fig()
    poly.plot_contacts()
    poly.show()

    sol = 'plain'

    #Compute the unconstrained and save ineqs
    poly.compute(stab.Mode.iteration,
                 maxIter=20,
                 epsilon=2e-3,
                 solver=sol,
                 plot_error=False,
                 plot_step=False,
                 plot_init=False,
                 plot_final=False)
    poly_ineq = poly.backend.doublepoly.inner.inequalities

    radius = 0.11
    fc = 4
    nc = 8

    for c in range(fc, nc):
        poly.addForceConstraint([poly.contacts[c]], radius)

    poly.compute(stab.Mode.iteration,
                 maxIter=20,
                 epsilon=2e-3,
                 solver=sol,
                 plot_error=False,
                 plot_step=False,
                 plot_init=False,
                 plot_final=False)

    poly.plot()
    poly.show()

    assert (poly.dimension == 2)
    assert (len(poly.gravity_envelope) == 1)

    A1, A2, t = poly.A1, poly.A2, poly.t

    sphere_ineq = np.array([[1., -1., 1.], [1., -1., -1.], [1., 1., -1.],
                            [1., 1., 1.], [-1., 1., -1.], [-1., 1., 1.],
                            [-1., -1., -1.], [-1., -1., 1.]])

    sphere = np.zeros((8 * (nc - fc), 1 + poly.nrVars()))
    for contact_id in range(fc, nc):
        line = 8 * (contact_id - fc)
        col = 1 + 3 * contact_id
        sphere[line:line + 8, col:col + 3] = sphere_ineq
        sphere[line:line + 8, 0] = radius * poly.mass * 9.81

    nr_lines = poly_ineq.shape[0]
    exp_poly_ineq = np.hstack([
        poly_ineq[:, 0:1],
        np.zeros((nr_lines, poly.nrVars() - 2)), poly_ineq[:, 1:]
    ])

    eq = np.hstack((t, -A1, -A2))

    mat = cdd.Matrix(sphere, number_type='fraction')
    mat.rep_type = cdd.RepType.INEQUALITY
    mat.extend(exp_poly_ineq)
    mat.extend(eq, linear=True)
    print("Let's goooooo")
    cdd_poly = cdd.Polyhedron(mat)
    vertices = np.array(cdd_poly.get_generators())

    print(vertices.shape)
    if len(vertices.shape) > 1:
        point_mask = vertices[:, 0] == 1
        points = vertices[point_mask, -2:]
        rays = vertices[~point_mask, -2:]
        hull = ConvexHull(points)

        poly.reset_fig()
        poly.plot_contacts()
        poly.plot_polyhedron(poly.inner, 'blue', 0.5)
        poly.ax.plot(hull.points[hull.vertices, 0],
                     hull.points[hull.vertices, 1],
                     'red',
                     label='cdd',
                     marker='^',
                     markersize=10)
        for ray in rays:
            if np.linalg.norm(ray) > 1e-10:
                print(ray)
                pp = np.vstack([i * ray for i in np.linspace(0.01, 1)])
                poly.ax.plot(pp[:, 0], pp[:, 1], 'red')
            else:
                print("This is a zero ray")
        poly.show()
    else:
        print("No vertices")
Пример #11
0
def main():
    #normals = map(stab.normalize,
    #              [np.array([[-0.7, 0, 1]]).T,
    #               np.array([[0.1, 0.5, 1]]).T,
    #               np.array([[0.5, -0.5, 1]]).T])

    #pos = [np.array([[0, 0, 0]]).T,
    #       np.array([[0, 1, 0]]).T,
    #       np.array([[1, 0, 0.2]]).T]

    #normals = map(stab.normalize,
    #              [np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T,
    #               np.array([[0., 0., 1.]]).T])

    #pos = [np.array([[0.1, 0.155, -0.105]]).T,
    #       np.array([[-0.07, 0.155, -0.105]]).T,
    #       np.array([[-0.07, 0.055, -0.105]]).T,
    #       np.array([[0.1, 0.055, -0.105]]).T]

    #normals = [np.array([[0, 0, 1]]).T]*3

    normals = list(
        map(stab.normalize, [
            np.array([[0.5, 0.0, 1]]).T,
            np.array([[0.5, 0.0, 1]]).T,
            np.array([[0.0, 0.0, 1]]).T
        ]))

    pos = [
        np.array([[0.1, -0.2, 0]]).T,
        np.array([[-0.1, -0.2, 0]]).T,
        np.array([[0.2, 0, 1]]).T
    ]

    bar = sum(pos) / float(len(pos))
    pos = [p - bar for p in pos]

    mu = 0.5
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    poly = stab.StabilityPolygon(60)
    poly.contacts = contacts

    poly.compute(stab.Mode.precision,
                 epsilon=2e-2,
                 record_anim=False,
                 plot_final=False)

    polyhedron = poly.polyhedron()

    m = np.min(polyhedron, axis=0)
    v = np.max(polyhedron, axis=0) - np.min(polyhedron, axis=0)

    points = np.random.rand(10000, 3)
    points = points * v + m
    stability = np.array([poly.sample(p.T[:, np.newaxis]) for p in points])

    poly.reset_fig()
    poly.plot()

    #fig = plt.figure()
    #ax = fig.add_subplot('121', aspect='equal', projection='3d')
    stable = points[stability]
    unstable = points[~stability]

    #x, y, z = zip(*stable)
    #poly.ax.scatter(x, y, z, c='g', marker='o')
    #ax = fig.add_subplot('122', aspect='equal', projection='3d')
    if unstable.size > 0:
        pass
        #x, y, z = zip(*unstable)
        #poly.ax.scatter(x, y, z, c='r', marker='^')

    vol_in = stab.volume_convex(poly.inner)
    vol_out = stab.volume_convex(poly.outer)
    vol_sampling = v[0] * v[1] * v[2]

    ineq_in = np.array(cdd.Polyhedron(poly.inner).get_inequalities())
    ineq_out = np.array(cdd.Polyhedron(poly.outer).get_inequalities())

    #H format : b - A x > 0 stored as b | -A
    test_in_points = ineq_in[:, [0]] + ineq_in[:, 1:].dot(points.T)
    in_points = np.all(test_in_points > 0, axis=0)

    test_out_points = ineq_out[:, [0]] + ineq_out[:, 1:].dot(points.T)
    out_points = np.all(test_out_points > 0, axis=0)

    und_points = np.logical_and(out_points, np.logical_not(in_points))
    criterion = np.logical_or(und_points, np.equal(in_points, stability))

    c = np.all(criterion)
    print("Criterion : {}".format(c))
    if not c:
        print("Criterion is false...")
        print("Number of failures : {}".format(criterion.size -
                                               np.count_nonzero(criterion)))
        print("Failure points : {}".format(points.T[~criterion]))
    else:
        print("Hurray all decidable points are confirmed!")

    print(
        "Volume inner : {} | Volume outer : {} | Volume sampling : {}".format(
            vol_in, vol_out, vol_sampling))
    print("Ratio vol. in./sampling : {} | Ratio points in/total : {}".format(
        vol_in / vol_sampling, stable.shape[0] / points.shape[0]))
    print(
        "Ratio vol. undecidable/sampling : {} | Ratio undec. points/total: {}".
        format((vol_out - vol_in) / vol_sampling,
               np.count_nonzero(und_points) / points.shape[0]))

    plt.show()
Пример #12
0
def main(n, alphas):
    if len(alphas) != n:
        raise RuntimeError("Need same number of constraints as contacts")

    if sum(alphas) < 1:
        raise RuntimeError("Bound too low")

    mu = 0.5
    pos, normals = contacts(n)
    cont = [stab.Contact(mu, pi, ni) for pi, ni in zip(pos, normals)]

    polygon = stab.StabilityPolygon(200, dimension=2, radius=1.5)
    polygon.contacts = cont

    for i in range(n):
        polygon.addForceConstraint([polygon.contacts[i]], alphas[i])

    polygon.compute(stab.Mode.best,
                    epsilon=2e-3,
                    maxIter=100,
                    solver='plain',
                    record_anim=False,
                    plot_init=False,
                    plot_step=False,
                    plot_final=False)
    polygon.reset_fig()
    polygon.plot_contacts()

    points = polygon.inner.vertices
    hull = ConvexHull(points)

    vertices = np.hstack((hull.vertices, hull.vertices[0]))
    polygon.ax.plot(points[vertices, 0], points[vertices, 1], 'r--', lw=2)

    shrink_points = []
    seq = CircularBuffer(point_seq(n))
    alphas = CircularBuffer(alphas)
    points = CircularBuffer([c.r[0:2, :] for c in polygon.contacts])
    for i in range(n):
        a0 = a1 = alphas[i]
        r0 = r1 = alphas[i] * points[i]
        k0 = k1 = i
        ex0 = "{}*p{}".format(alphas[i], i)
        ex1 = "{}*p{}".format(alphas[i], i)

        done0 = done1 = False
        niter = 1
        while not (done0 and done1):
            k0 = i + seq[niter]
            k1 = i - seq[niter]

            if not done0:
                if a0 + alphas[k0] >= 1:
                    r0 = r0 + (1 - a0) * points[k0]
                    ex0 += "+ {}*p{}".format(1 - a0, k0)
                    done0 = True
                else:
                    r0 = r0 + alphas[k0] * points[k0]
                    ex0 += "+ {}*p{}".format(alphas[k0], k0)
                    a0 += alphas[k0]

            if not done1:
                if a1 + alphas[k1] >= 1:
                    r1 = r1 + (1 - a1) * points[k1]
                    ex1 += " {}*p{}".format(1 - a1, k1)
                    done1 = True
                else:
                    r1 = r1 + alphas[k1] * points[k1]
                    ex1 += " {}*p{}".format(alphas[k1], k1)
                    a1 += alphas[k1]
            niter += 1

        print(ex0)
        print(ex1)
        shrink_points.append(r0)
        shrink_points.append(r1)
        polygon.ax.plot(r0[0], r0[1], marker='^', markersize=20)
        polygon.ax.plot(r1[0], r1[1], marker='^', markersize=20)

    polygon.show()
Пример #13
0
def main():
    normals = map(stab.normalize, [
        np.array([[0.5, 0.0, 1]]).T,
        np.array([[0.5, 0.0, 1]]).T,
        np.array([[0.0, 0.0, 1]]).T
    ])

    pos = [
        np.array([[0.1, -0.2, 0]]).T,
        np.array([[-0.1, -0.2, 0]]).T,
        np.array([[0.2, 0, 1]]).T
    ]

    mu = 0.5
    contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

    poly = stab.StabilityPolygon(60, dimension=2)
    poly.contacts = contacts

    poly.select_solver('cdd')
    poly.make_problem()
    poly.init_algo()
    poly.build_polys()

    dbpoly = DoublePolygon(poly.inner, poly.outer)

    print dbpoly.outer.edges

    print "Corresp:"
    for i, j in enumerate(dbpoly.correspondences):
        print "{} --> ({}, {})".format(i, *dbpoly.outer.edges[j][1:])
    for e in dbpoly.inner.edges:
        print "({}, {})".format(*e[1:])

    print "Vertex"
    print "-dbpoly:"
    print dbpoly.inner.vertices

    print "-dineq"
    dineq = [l / abs(l[0]) for l in dbpoly.inner.inequalities]
    print np.vstack(dineq)
    ineq = cdd.Polyhedron(poly.inner).get_inequalities()
    ineq.canonicalize()
    print "-ineq"
    print ineq

    poly.compute(stab.Mode.iteration, maxIter=2, plot_final=False)

    print "Adding..."
    print poly.points[-2]
    #dbpoly.addPointToInner(poly.points[-2], 3)

    print "Vertices"
    print "-dbpoly"
    print dbpoly.inner.vertices
    print "-inner"
    print poly.inner

    print "Ineq"

    dineq = [l / abs(l[0]) for l in dbpoly.inner.inequalities]
    print "-dineq"
    print np.vstack(dineq)

    vertices = cdd.Matrix(
        np.hstack([
            np.ones((dbpoly.inner.vertices.shape[0], 1)), dbpoly.inner.vertices
        ]))
    vertices.rep_type = cdd.RepType.GENERATOR
    ineq = cdd.Polyhedron(vertices).get_inequalities()
    ineq.canonicalize()
    print "-ineq from vertex"
    print ineq

    spoly = geom.Polygon([(l[1], l[2]) for l in vertices])
    print spoly.exterior.is_ccw
    print spoly.convex_hull.exterior.coords.xy
    spoly.exterior.coords = list(spoly.exterior.coords)[::-1]
    print spoly.exterior.is_ccw

    i1 = dbpoly.inner.edges[3][1]
    i2 = dbpoly.inner.edges[3][2]
    print i1, i2

    e1 = dbpoly.outer.edges[dbpoly.correspondences[i1]]
    e2 = dbpoly.outer.edges[dbpoly.correspondences[i2]]
    print e1, e2
    old_edges = copy.deepcopy(dbpoly.outer.edges)
    print dbpoly.outer.vertices
    dbpoly.addInequalityToOuter(poly.offsets[-2], poly.directions[-2], i1, i2)

    print poly.outer
    print dbpoly.outer.inequalities

    print cdd.Polyhedron(poly.outer).get_generators()
    print dbpoly.outer.vertices
    print old_edges
    print dbpoly.outer.edges

    poly.plot()
    x, y = zip(*dbpoly.inner.vertices)
    poly.ax.plot(x, y)
    poly.show()
Пример #14
0
def main():
  global pos, normals

  #bar = sum(pos)/float(len(pos))
  #pos = [p-bar for p in pos]

  mu = 0.1
  contacts = [stab.Contact(mu, p, n) for p, n in zip(pos, normals)]

  poly = stab.StabilityPolygon(60, dimension=2,
                               force_lim=1000.)

  poly.contacts = contacts[0:8]

  for c in poly.contacts[0:4]:
    c.r[2] = 0.
    c.n = np.array([[0.4], [0.4], [np.sqrt(1-2*(0.4**2))]])
    #c.n = np.array([[0., 1., 0.]]).T

  for c in poly.contacts[4:]:
    c.r[2] = 0.
    #c.n = np.array([[0., 0., 1.]]).T
    c.n = np.array([[-0.4], [-0.4], [np.sqrt(1-2*(0.4**2))]])

  #poly.reset_fig()
  #poly.plot_contacts()
  #poly.show()

  #poly.make_problem()
  #poly.check_sizes()

  #point = np.array([[0.36510907, 0.31419711, 0.73607441]]).T

  #poly.addTorqueConstraint(contacts[-4:-2],
  #                         point,
  #                         10*np.ones((3, 1)))

  #poly.addTorqueConstraint(contacts[-2:],
  #                         point,
  #                         10*np.ones((3, 1)))

  #bar1 = sum([c.r for c in poly.contacts[0:4]])/4
  #bar2 = sum([c.r for c in poly.contacts[4:8]])/4
  #poly.addDistConstraint(bar1, 1.5)
  #poly.addDistConstraint(bar2, 1.5)

  #poly.make_problem()
  #poly.reset_fig()
  #poly.plot_contacts()
  #poly.ax.plot(point[0], point[1], point[2], 'o', markersize=10)
  #poly.show()

  sol = 'plain'

  poly.compute(stab.Mode.iteration, maxIter=50, epsilon=2e-3,
               solver=sol, plot_error=False, plot_step=False,
               plot_init=False, plot_final=False)

  assert(poly.dimension == 2)
  assert(len(poly.gravity_envelope) == 1)

  A1, A2, t = poly.A1, poly.A2, poly.t

  nr_generators = 4
  friction_cstr = []

  for i, contact in enumerate(poly.contacts):
    cone = build_cone(nr_generators, mu, contact.n, offset_angle=np.pi/4)
    nr_ineq = cone.shape[0]
    cstr = np.zeros((nr_ineq+1, 1+poly.nrVars()))
    cstr[:-1, 0] = cone[:, 0]
    cstr[:-1, 3*i+1:3*i+4] = cone[:, 1:]

    cstr[-1, 0] = 0.
    cstr[-1, 3*i+1:3*i+4] = contact.n.T
    friction_cstr.append(copy.deepcopy(cstr))

  com_max = 2.
  limit_cstr = np.zeros((4, 1+poly.nrVars()))
  limit_cstr[:, 0:1] = com_max*np.vstack((np.ones((2, 1)), np.ones((2, 1))))
  limit_cstr[:, -2:] = np.vstack((-np.identity(2), np.identity(2)))

  nr_forces = 3*len(poly.contacts)
  f_max = 5.*poly.mass*9.81
  limit_force = np.zeros((2*nr_forces, 1+poly.nrVars()))
  limit_force[:, 0:1] = f_max*np.vstack((np.ones((nr_forces, 1)), np.ones((nr_forces, 1))))
  limit_force[:, 1:-2] = np.vstack((-np.identity(nr_forces), np.identity(nr_forces)))

  def limit_fz(percent):
    nr_fz = len(poly.contacts)
    f_max = percent*poly.mass*9.81
    limit_force = np.zeros((2*nr_fz, 1+poly.nrVars()))
    for i, c in enumerate(poly.contacts):
      limit_force[i, 1+3*i:4+3*i] = c.n.T
      limit_force[nr_fz+i, 1+3*i:4+3*i] = -c.n.T
    limit_force[:, 0] = f_max

    return limit_force

  friction = np.vstack(friction_cstr)
  eq = np.hstack((t, -A1, -A2))
  f_lim = limit_fz(0.2)

  print(friction.shape)
  print(f_lim.shape)

  #mat = cdd.Matrix(friction, number_type='fraction')
  ##mat = cdd.Matrix(friction)
  #mat.rep_type = cdd.RepType.INEQUALITY
  ##mat.extend(limit_force)
  ##mat.extend(limit_cstr)
  #mat.extend(f_lim)
  #print np.vstack(friction)
  #mat.extend(eq, linear=True)
  #cdd_poly = cdd.Polyhedron(mat)
  #print "Let's go boiz"
  #vertices = np.array(cdd_poly.get_generators())

  parmapoly = pyparma.Polyhedron(hrep=fractionize(friction))
  print(eq.shape)
  for equality in eq:
    ex = ex_from_line(fractionize(equality.squeeze()))
    parmapoly.poly.add_constraint(ex == 0)

  vertices = parmapoly.vrep()
  print("Got full vrep")

  for ineq in f_lim:
    print("Insert")
    parmapoly.add_ineq(fractionize(ineq))
  print("Inserted shit")
  vertex_lim = parmapoly.vrep()
  print("Got small vrep")

  #print np.array(mat).shape
  print(vertices.shape)
  if len(vertices.shape) > 1:
    points = vertices[:, -2:]
    hull = ConvexHull(points)

    points_lim = vertex_lim[:, -2:]
    hull_lim = ConvexHull(points_lim)

    poly.reset_fig()
    poly.plot_contacts()
    poly.plot_polyhedron(poly.inner, 'blue', 0.5)
    poly.ax.plot(points[hull.vertices, 0], points[hull.vertices, 1], label='linear')
    poly.ax.plot(points_lim[hull_lim.vertices, 0], points_lim[hull_lim.vertices, 1], label='linear lim')
    poly.show()
  else:
    print("No vertices")