Пример #1
0
def main():

    # requires  n_comp_to_use, pc1_chunk_size
    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()


    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir( this_run_dir)


    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)


    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    result = do_pca(cma_args.n_components, cma_args.n_comp_to_use, traj_params_dir_name, intermediate_data_dir,
                    proj=False,
                    origin="mean_param", use_IPCA=cma_args.use_IPCA, chunk_size=cma_args.chunk_size, reuse=True)
    logger.debug("after pca")

    final_pcs = result["first_n_pcs"]

    all_param_iterator = get_allinone_concat_df(dir_name=traj_params_dir_name, use_IPCA=True, chunk_size=cma_args.pc1_chunk_size)
    plane_angles_vs_final_plane_along_the_way = []
    ipca = IncrementalPCA(n_components=cma_args.n_comp_to_use)  # for sparse PCA to speed up
    for chunk in all_param_iterator:

        logger.log(f"currently at {all_param_iterator._currow}")
        ipca.partial_fit(chunk.values)

        first_n_pcs = ipca.components_[:cma_args.n_comp_to_use]
        assert final_pcs.shape[0] == first_n_pcs.shape[0]


        plane_angle = cal_angle_between_nd_planes(first_n_pcs, final_pcs)
        plane_angles_vs_final_plane_along_the_way.append(plane_angle)


    plot_dir = get_plot_dir(cma_args)
    if not os.path.exists(plot_dir):
        os.makedirs(plot_dir)
    plane_angles_vs_final_plane_plot_dir = get_plane_angles_vs_final_plane_along_the_way_plot_dir(plot_dir, cma_args.n_comp_to_use)
    if not os.path.exists(plane_angles_vs_final_plane_plot_dir):
        os.makedirs(plane_angles_vs_final_plane_plot_dir)




    angles_plot_name = f"plane_angles_vs_final_plane_plot_dir "
    plot_2d(plane_angles_vs_final_plane_plot_dir, angles_plot_name, np.arange(len(plane_angles_vs_final_plane_along_the_way)), plane_angles_vs_final_plane_along_the_way, "num of chunks", "angle with diff in degrees", False)
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    from stable_baselines.low_dim_analysis.common import do_pca, plot_2d

    origin = "mean_param"
    result = do_pca(cma_args.n_components,
                    cma_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=False,
                    origin=origin,
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size)

    final_params = result["final_concat_params"]
    all_pcs = result["pcs_components"]

    logger.log("grab start params")
    start_file = get_full_param_traj_file_path(traj_params_dir_name, "start")
    start_params = pd.read_csv(start_file, header=None).values[0]

    angles = []
    for pc in all_pcs:
        angles.append(cal_angle(pc, final_params - start_params))

    plot_dir = get_plot_dir(cma_args)
    if not os.path.exists(plot_dir):
        os.makedirs(plot_dir)

    angles_plot_name = f"angles with final - start start n_comp:{all_pcs.shape[0]} dim space of mean pca plane, "
    plot_2d(plot_dir, angles_plot_name, np.arange(all_pcs.shape[0]), angles,
            "num of pcs", "angle with diff", False)
def main(origin="final_param"):

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    cma_args = {
        "alg": 'ppo2',
        "env": "DartHopper-v1",
        "num_timesteps": 5000,
        "normalize": True,
        "n_steps": 2048,
        "nminibatches": 32,
        "run_num": 0
    }
    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    from stable_baselines.low_dim_analysis.common import do_pca
    result = do_pca(cma_args.n_components,
                    cma_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=True,
                    origin=origin,
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size)
def main():

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    # origin = "final_param"
    origin = cma_args.origin

    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)

    cma_run_num, cma_intermediate_data_dir = generate_run_dir(
        get_cma_returns_dirname,
        intermediate_dir=intermediate_data_dir,
        n_comp=cma_args.n_comp_to_use)
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    proj_or_not = (cma_args.n_comp_to_use == 2)
    result = do_pca(cma_args.n_components,
                    cma_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=proj_or_not,
                    origin=origin,
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size,
                    reuse=False)
    '''
    ==========================================================================================
    eval all xy coords
    ==========================================================================================
    '''


    from stable_baselines.low_dim_analysis.common import plot_contour_trajectory, gen_subspace_coords,do_eval_returns\
        , do_proj_on_first_n

    if origin == "final_param":
        origin_param = result["final_concat_params"]
    else:
        origin_param = result["mean_param"]

    final_param = result["final_concat_params"]
    last_proj_coord = do_proj_on_first_n(final_param, result["first_n_pcs"],
                                         origin_param)
    starting_coord = last_proj_coord
    logger.log(f"CMA STASRTING CORRD: {starting_coord}")

    # starting_coord = (1/2*np.max(xcoordinates_to_eval), 1/2*np.max(ycoordinates_to_eval)) # use mean
    assert result["first_n_pcs"].shape[0] == cma_args.n_comp_to_use
    mean_rets, min_rets, max_rets, opt_path, opt_path_mean = do_cma(
        cma_args, result["first_n_pcs"], origin_param, save_dir,
        starting_coord, cma_args.cma_var)
    dump_rows_write_csv(cma_intermediate_data_dir, opt_path_mean,
                        "opt_mean_path")

    plot_dir = get_plot_dir(cma_args)
    cma_plot_dir = get_cma_plot_dir(plot_dir, cma_args.n_comp_to_use,
                                    cma_run_num, origin)
    if not os.path.exists(cma_plot_dir):
        os.makedirs(cma_plot_dir)

    ret_plot_name = f"cma return on {cma_args.n_comp_to_use} dim space of real pca plane, " \
                    f"explained {np.sum(result['explained_variance_ratio'][:cma_args.n_comp_to_use])}"
    plot_cma_returns(cma_plot_dir,
                     ret_plot_name,
                     mean_rets,
                     min_rets,
                     max_rets,
                     show=False)

    if cma_args.n_comp_to_use == 2:
        proj_coords = result["proj_coords"]
        assert proj_coords.shape[1] == 2

        xcoordinates_to_eval, ycoordinates_to_eval = gen_subspace_coords(
            cma_args,
            np.vstack((proj_coords, opt_path_mean)).T)

        eval_returns = do_eval_returns(cma_args,
                                       intermediate_data_dir,
                                       result["first_n_pcs"],
                                       origin_param,
                                       xcoordinates_to_eval,
                                       ycoordinates_to_eval,
                                       save_dir,
                                       pca_center=origin,
                                       reuse=False)

        plot_contour_trajectory(cma_plot_dir,
                                f"{origin}_origin_eval_return_contour_plot",
                                xcoordinates_to_eval,
                                ycoordinates_to_eval,
                                eval_returns,
                                proj_coords[:, 0],
                                proj_coords[:, 1],
                                result["explained_variance_ratio"][:2],
                                num_levels=25,
                                show=False,
                                sub_alg_path=opt_path_mean)

    opt_mean_path_in_old_basis = [
        mean_projected_param.dot(result["first_n_pcs"]) + result["mean_param"]
        for mean_projected_param in opt_path_mean
    ]
    distance_to_final = [
        LA.norm(opt_mean - final_param, ord=2)
        for opt_mean in opt_mean_path_in_old_basis
    ]
    distance_to_final_plot_name = f"distance_to_final over generations "
    plot_2d(cma_plot_dir, distance_to_final_plot_name,
            np.arange(len(distance_to_final)), distance_to_final,
            "num generation", "distance_to_final", False)
def main():

    # requires  n_comp_to_use, pc1_chunk_size
    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)

    logger.log("grab final params")
    final_file = get_full_param_traj_file_path(traj_params_dir_name, "final")
    final_params = pd.read_csv(final_file, header=None).values[0]

    logger.log("grab start params")
    start_file = get_full_param_traj_file_path(traj_params_dir_name, "start")
    start_params = pd.read_csv(start_file, header=None).values[0]

    V = final_params - start_params
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''

    result = do_pca(cma_args.n_components,
                    cma_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=False,
                    origin="mean_param",
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size,
                    reuse=True)
    logger.debug("after pca")

    final_plane = result["first_n_pcs"]

    count_file = get_full_param_traj_file_path(traj_params_dir_name,
                                               "total_num_dumped")
    total_num = pd.read_csv(count_file, header=None).values[0]

    all_param_iterator = get_allinone_concat_df(
        dir_name=traj_params_dir_name,
        use_IPCA=True,
        chunk_size=cma_args.pc1_chunk_size)
    unduped_angles_along_the_way = []
    duped_angles_along_the_way = []
    diff_along = []

    unweighted_pc1_vs_V_angles = []
    duped_pc1_vs_V_angles = []
    pc1_vs_V_diffs = []

    unweighted_ipca = IncrementalPCA(
        n_components=cma_args.n_comp_to_use)  # for sparse PCA to speed up

    all_matrix_buffer = []

    try:
        i = -1
        for chunk in all_param_iterator:
            i += 1
            if i >= 2:
                break
            chunk = chunk.values
            unweighted_ipca.partial_fit(chunk)
            unweighted_angle = cal_angle_between_nd_planes(
                final_plane,
                unweighted_ipca.components_[:cma_args.n_comp_to_use])
            unweighted_pc1_vs_V_angle = postize_angle(
                cal_angle_between_nd_planes(V, unweighted_ipca.components_[0]))

            unweighted_pc1_vs_V_angles.append(unweighted_pc1_vs_V_angle)

            #TODO ignore 90 or 180 for now
            if unweighted_angle > 90:
                unweighted_angle = 180 - unweighted_angle
            unduped_angles_along_the_way.append(unweighted_angle)

            np.testing.assert_almost_equal(
                cal_angle_between_nd_planes(
                    unweighted_ipca.components_[:cma_args.n_comp_to_use][0],
                    final_plane[0]),
                cal_angle(
                    unweighted_ipca.components_[:cma_args.n_comp_to_use][0],
                    final_plane[0]))

            all_matrix_buffer.extend(chunk)

            weights = gen_weights(all_matrix_buffer,
                                  Funcs[cma_args.func_index_to_use])
            logger.log(f"currently at {all_param_iterator._currow}")
            # ipca = PCA(n_components=1)  # for sparse PCA to speed up
            # ipca.fit(duped_in_so_far)
            wpca = WPCA(n_components=cma_args.n_comp_to_use
                        )  # for sparse PCA to speed up
            tic = time.time()
            wpca.fit(all_matrix_buffer, weights=weights)
            toc = time.time()

            logger.debug(
                f"WPCA of {len(all_matrix_buffer)} data took {toc - tic} secs "
            )
            duped_angle = cal_angle_between_nd_planes(
                final_plane, wpca.components_[:cma_args.n_comp_to_use])

            duped_pc1_vs_V_angle = postize_angle(
                cal_angle_between_nd_planes(V, wpca.components_[0]))
            duped_pc1_vs_V_angles.append(duped_pc1_vs_V_angle)
            pc1_vs_V_diffs.append(duped_pc1_vs_V_angle -
                                  unweighted_pc1_vs_V_angle)

            #TODO ignore 90 or 180 for now
            if duped_angle > 90:
                duped_angle = 180 - duped_angle
            duped_angles_along_the_way.append(duped_angle)
            diff_along.append(unweighted_angle - duped_angle)
    finally:
        plot_dir = get_plot_dir(cma_args)
        if not os.path.exists(plot_dir):
            os.makedirs(plot_dir)

        angles_plot_name = f"WPCA" \
                           f"cma_args.pc1_chunk_size: {cma_args.pc1_chunk_size} "
        plot_2d(plot_dir, angles_plot_name,
                np.arange(len(duped_angles_along_the_way)),
                duped_angles_along_the_way, "num of chunks",
                "angle with diff in degrees", False)

        angles_plot_name = f"Not WPCA exponential 2" \
                           f"cma_args.pc1_chunk_size: {cma_args.pc1_chunk_size} "
        plot_2d(plot_dir, angles_plot_name,
                np.arange(len(unduped_angles_along_the_way)),
                unduped_angles_along_the_way, "num of chunks",
                "angle with diff in degrees", False)


        angles_plot_name = f"Not WPCA - WPCA diff_along exponential 2," \
                           f"cma_args.pc1_chunk_size: {cma_args.pc1_chunk_size} "
        plot_2d(plot_dir, angles_plot_name, np.arange(len(diff_along)),
                diff_along, "num of chunks", "angle with diff in degrees",
                False)




        angles_plot_name = f"PC1 VS VWPCA PC1 VS V" \
                           f"cma_args.pc1_chunk_size: {cma_args.pc1_chunk_size} "
        plot_2d(plot_dir, angles_plot_name,
                np.arange(len(duped_pc1_vs_V_angles)), duped_pc1_vs_V_angles,
                "num of chunks", "angle with diff in degrees", False)

        angles_plot_name = f"PC1 VS VNot WPCA PC1 VS V" \
                           f"cma_args.pc1_chunk_size: {cma_args.pc1_chunk_size} "
        plot_2d(plot_dir, angles_plot_name,
                np.arange(len(unweighted_pc1_vs_V_angles)),
                unweighted_pc1_vs_V_angles, "num of chunks",
                "angle with diff in degrees", False)


        angles_plot_name = f"PC1 VS VNot WPCA - WPCA diff PC1 VS V" \
                           f"cma_args.pc1_chunk_size: {cma_args.pc1_chunk_size} "
        plot_2d(plot_dir, angles_plot_name, np.arange(len(pc1_vs_V_diffs)),
                pc1_vs_V_diffs, "num of chunks", "angle with diff in degrees",
                False)

        del all_matrix_buffer
        import gc
        gc.collect()
def main(n_comp_start=2, do_eval=True):

    import sys
    logger.log(sys.argv)
    common_arg_parser = get_common_parser()
    cma_args, cma_unknown_args = common_arg_parser.parse_known_args()

    this_run_dir = get_dir_path_for_this_run(cma_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir,
                                                      params_scope="pi")
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    from stable_baselines.low_dim_analysis.common import do_pca, get_projected_data_in_old_basis, \
        calculate_projection_errors, plot_2d

    origin = "mean_param"
    result = do_pca(cma_args.n_components,
                    cma_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=False,
                    origin=origin,
                    use_IPCA=cma_args.use_IPCA,
                    chunk_size=cma_args.chunk_size)

    final_params = result["final_concat_params"]
    all_pcs = result["pcs_components"]
    mean_param = result["mean_param"]
    projected = []
    projection_errors = []

    for num_pcs in range(n_comp_start, all_pcs.shape[0] + 1):
        projected.append(
            get_projected_data_in_old_basis(mean_param, all_pcs, final_params,
                                            num_pcs))
        proj_to_n_pcs_error = calculate_projection_errors(
            mean_param, all_pcs, final_params, num_pcs)
        assert len(proj_to_n_pcs_error) == 1
        projection_errors.extend(proj_to_n_pcs_error)

    plot_dir = get_plot_dir(cma_args)
    if not os.path.exists(plot_dir):
        os.makedirs(plot_dir)

    if do_eval:

        from stable_baselines.ppo2.run_mujoco import eval_return
        thetas_to_eval = projected

        tic = time.time()

        eval_returns = Parallel(n_jobs=cma_args.cores_to_use, max_nbytes='100M') \
            (delayed(eval_return)(cma_args, save_dir, theta, cma_args.eval_num_timesteps, i) for (i, theta) in
             enumerate(thetas_to_eval))
        toc = time.time()
        logger.log(
            f"####################################1st version took {toc-tic} seconds"
        )

        np.savetxt(get_projected_finals_eval_returns_filename(
            intermediate_dir=intermediate_data_dir,
            n_comp_start=n_comp_start,
            np_comp_end=all_pcs.shape[0],
            pca_center=origin),
                   eval_returns,
                   delimiter=',')

        ret_plot_name = f"final project performances on start: {n_comp_start} end:{all_pcs.shape[0]} dim space of mean pca plane, "
        plot_final_project_returns_returns(plot_dir,
                                           ret_plot_name,
                                           eval_returns,
                                           n_comp_start,
                                           all_pcs.shape[0],
                                           show=False)

    error_plot_name = f"final project errors on start: {n_comp_start} end:{all_pcs.shape[0]} dim space of mean pca plane, "
    plot_2d(plot_dir, error_plot_name,
            np.arange(n_comp_start, all_pcs.shape[0] + 1), projection_errors,
            "num of pcs", "projection error", False)
Пример #7
0
def main():

    import sys
    logger.log(sys.argv)
    ppos_arg_parser = get_common_parser()

    ppos_args, ppos_unknown_args = ppos_arg_parser.parse_known_args()
    full_space_alg = ppos_args.alg

    # origin = "final_param"
    origin = ppos_args.origin

    this_run_dir = get_dir_path_for_this_run(ppos_args)

    traj_params_dir_name = get_full_params_dir(this_run_dir)
    intermediate_data_dir = get_intermediate_data_dir(this_run_dir)
    save_dir = get_save_dir(this_run_dir)

    if not os.path.exists(intermediate_data_dir):
        os.makedirs(intermediate_data_dir)

    ppos_run_num, ppos_intermediate_data_dir = generate_run_dir(
        get_ppos_returns_dirname,
        intermediate_dir=intermediate_data_dir,
        n_comp=ppos_args.n_comp_to_use)
    '''
    ==========================================================================================
    get the pc vectors
    ==========================================================================================
    '''
    proj_or_not = (ppos_args.n_comp_to_use == 2)
    result = do_pca(ppos_args.n_components,
                    ppos_args.n_comp_to_use,
                    traj_params_dir_name,
                    intermediate_data_dir,
                    proj=proj_or_not,
                    origin=origin,
                    use_IPCA=ppos_args.use_IPCA,
                    chunk_size=ppos_args.chunk_size)
    '''
    ==========================================================================================
    eval all xy coords
    ==========================================================================================
    '''

    if origin == "final_param":
        origin_param = result["final_concat_params"]
    else:
        origin_param = result["mean_param"]

    final_param = result["final_concat_params"]
    last_proj_coord = do_proj_on_first_n(final_param, result["first_n_pcs"],
                                         origin_param)

    if origin == "final_param":
        back_final_param = low_dim_to_old_basis(last_proj_coord,
                                                result["first_n_pcs"],
                                                origin_param)
        assert np.testing.assert_almost_equal(back_final_param, final_param)

    starting_coord = last_proj_coord
    logger.log(f"PPOS STASRTING CORRD: {starting_coord}")

    # starting_coord = (1/2*np.max(xcoordinates_to_eval), 1/2*np.max(ycoordinates_to_eval)) # use mean
    assert result["first_n_pcs"].shape[0] == ppos_args.n_comp_to_use

    eprews, moving_ave_rewards, optimization_path = do_ppos(
        ppos_args, result, intermediate_data_dir, origin_param)

    ppos_args.alg = full_space_alg
    plot_dir = get_plot_dir(ppos_args)
    ppos_plot_dir = get_ppos_plot_dir(plot_dir, ppos_args.n_comp_to_use,
                                      ppos_run_num)
    if not os.path.exists(ppos_plot_dir):
        os.makedirs(ppos_plot_dir)

    ret_plot_name = f"cma return on {ppos_args.n_comp_to_use} dim space of real pca plane, " \
                    f"explained {np.sum(result['explained_variance_ratio'][:ppos_args.n_comp_to_use])}"
    plot_ppos_returns(ppos_plot_dir,
                      ret_plot_name,
                      moving_ave_rewards,
                      show=False)

    if ppos_args.n_comp_to_use == 2:
        proj_coords = result["proj_coords"]
        assert proj_coords.shape[1] == 2

        xcoordinates_to_eval, ycoordinates_to_eval = gen_subspace_coords(
            ppos_args,
            np.vstack((proj_coords, optimization_path)).T)

        eval_returns = do_eval_returns(ppos_args,
                                       intermediate_data_dir,
                                       result["first_n_pcs"],
                                       origin_param,
                                       xcoordinates_to_eval,
                                       ycoordinates_to_eval,
                                       save_dir,
                                       pca_center=origin)

        plot_contour_trajectory(ppos_plot_dir,
                                "end_point_origin_eval_return_contour_plot",
                                xcoordinates_to_eval,
                                ycoordinates_to_eval,
                                eval_returns,
                                proj_coords[:, 0],
                                proj_coords[:, 1],
                                result["explained_variance_ratio"][:2],
                                num_levels=25,
                                show=False,
                                sub_alg_path=optimization_path)

    opt_mean_path_in_old_basis = [
        low_dim_to_old_basis(projected_opt_params, result["first_n_pcs"],
                             origin_param)
        for projected_opt_params in optimization_path
    ]
    distance_to_final = [
        LA.norm(opt_mean - final_param, ord=2)
        for opt_mean in opt_mean_path_in_old_basis
    ]
    distance_to_final_plot_name = f"distance_to_final over generations "
    plot_2d(ppos_plot_dir, distance_to_final_plot_name,
            np.arange(len(distance_to_final)), distance_to_final,
            "num generation", "distance_to_final", False)