def __init__(self, args=None, feature_config=None): if args is None: args = DEFAULT_PARSER_ARGS.copy() if feature_config is None: self.feature_config = FEATURE_CONFIG.copy() model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand']) # load pretrain; note that we allow the pretrain_file to be non-existent pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) self.pretrain = Pretrain(pretrain_file) # load model print("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] self.trainer = Trainer(pretrain=self.pretrain, model_file=model_file, use_cuda=use_cuda) self.loaded_args, self.vocab = self.trainer.args, self.trainer.vocab self.batch_size = args['batch_size'] # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in [ 'shorthand' ] or k == 'mode': self.loaded_args[k] = args[k]
def evaluate(args): # file paths system_pred_file = args['output_file'] gold_file = args['gold_file'] model_file = model_file_name(args) # load pretrained vectors if needed pretrain = load_pretrain(args) # load model logger.info("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] trainer = Trainer(pretrain=pretrain, model_file=model_file, use_cuda=use_cuda) loaded_args, vocab = trainer.args, trainer.vocab # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand' ] or k == 'mode': loaded_args[k] = args[k] # load data logger.info("Loading data with batch size {}...".format( args['batch_size'])) doc = CoNLL.conll2doc(input_file=args['eval_file']) batch = DataLoader(doc, args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) if len(batch) > 0: logger.info("Start evaluation...") preds = [] for i, b in enumerate(batch): preds += trainer.predict(b) else: # skip eval if dev data does not exist preds = [] preds = utils.unsort(preds, batch.data_orig_idx) # write to file and score batch.doc.set([HEAD, DEPREL], [y for x in preds for y in x]) CoNLL.write_doc2conll(batch.doc, system_pred_file) if gold_file is not None: _, _, score = scorer.score(system_pred_file, gold_file) logger.info("Parser score:") logger.info("{} {:.2f}".format(args['shorthand'], score * 100))
def evaluate(args): # file paths system_pred_file = args['output_file'] gold_file = args['gold_file'] model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand']) # load pretrain; note that we allow the pretrain_file to be non-existent pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) pretrain = Pretrain(pretrain_file) # load model print("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] trainer = Trainer(pretrain=pretrain, model_file=model_file, use_cuda=use_cuda) loaded_args, vocab = trainer.args, trainer.vocab # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in ['shorthand'] or k == 'mode': loaded_args[k] = args[k] # load data print("Loading data with batch size {}...".format(args['batch_size'])) doc = Document(CoNLL.conll2dict(input_file=args['eval_file'])) batch = DataLoader(doc, args['batch_size'], loaded_args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) if len(batch) > 0: print("Start evaluation...") preds = [] for i, b in enumerate(batch): preds += trainer.predict(b) else: # skip eval if dev data does not exist preds = [] preds = utils.unsort(preds, batch.data_orig_idx) # write to file and score batch.doc.set([HEAD, DEPREL], [y for x in preds for y in x]) CoNLL.dict2conll(batch.doc.to_dict(), system_pred_file) if gold_file is not None: _, _, score = scorer.score(system_pred_file, gold_file) print("Parser score:") print("{} {:.2f}".format(args['shorthand'], score*100))
class Predictor: """Wrapper class so model can sit in memory for multiple predictions""" def __init__(self, args=None, feature_config=None): if args is None: args = DEFAULT_PARSER_ARGS.copy() if feature_config is None: self.feature_config = FEATURE_CONFIG.copy() model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand']) # load pretrain; note that we allow the pretrain_file to be non-existent pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) self.pretrain = Pretrain(pretrain_file) # load model print("Loading model from: {}".format(model_file)) use_cuda = args['cuda'] and not args['cpu'] self.trainer = Trainer(pretrain=self.pretrain, model_file=model_file, use_cuda=use_cuda) self.loaded_args, self.vocab = self.trainer.args, self.trainer.vocab self.batch_size = args['batch_size'] # load config for k in args: if k.endswith('_dir') or k.endswith('_file') or k in [ 'shorthand' ] or k == 'mode': self.loaded_args[k] = args[k] def predict(self, eval_file_or_string): eval_file = _read_conllu_arg(eval_file_or_string, self.feature_config, predict=True) doc = Document(CoNLL.conll2dict(input_file=eval_file)) batch = DataLoader(doc, self.batch_size, self.loaded_args, self.pretrain, vocab=self.vocab, evaluation=True, sort_during_eval=True) preds = [] if len(batch) > 0: for i, b in enumerate(batch): preds += self.trainer.predict(b) preds = utils.unsort(preds, batch.data_orig_idx) batch.doc.set([HEAD, DEPREL], [y for x in preds for y in x]) doc_conll = CoNLL.convert_dict(batch.doc.to_dict()) conll_string = CoNLL.conll_as_string(doc_conll) return conll_string
def train(args): model_file = model_file_name(args) utils.ensure_dir(os.path.split(model_file)[0]) # load pretrained vectors if needed pretrain = load_pretrain(args) # load data logger.info("Loading data with batch size {}...".format( args['batch_size'])) train_data, _ = CoNLL.conll2dict(input_file=args['train_file']) # possibly augment the training data with some amount of fake data # based on the options chosen logger.info("Original data size: {}".format(len(train_data))) train_data.extend( augment_punct(train_data, args['augment_nopunct'], keep_original_sentences=False)) logger.info("Augmented data size: {}".format(len(train_data))) train_doc = Document(train_data) train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, evaluation=False) vocab = train_batch.vocab dev_doc = CoNLL.conll2doc(input_file=args['eval_file']) dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) # pred and gold path system_pred_file = args['output_file'] gold_file = args['gold_file'] # skip training if the language does not have training or dev data if len(train_batch) == 0 or len(dev_batch) == 0: logger.info("Skip training because no data available...") sys.exit(0) logger.info("Training parser...") trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda']) global_step = 0 max_steps = args['max_steps'] dev_score_history = [] best_dev_preds = [] current_lr = args['lr'] global_start_time = time.time() format_str = 'Finished STEP {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}' using_amsgrad = False last_best_step = 0 # start training train_loss = 0 while True: do_break = False for i, batch in enumerate(train_batch): start_time = time.time() global_step += 1 loss = trainer.update(batch, eval=False) # update step train_loss += loss if global_step % args['log_step'] == 0: duration = time.time() - start_time logger.info( format_str.format(global_step, max_steps, loss, duration, current_lr)) if global_step % args['eval_interval'] == 0: # eval on dev logger.info("Evaluating on dev set...") dev_preds = [] for batch in dev_batch: preds = trainer.predict(batch) dev_preds += preds dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx) dev_batch.doc.set([HEAD, DEPREL], [y for x in dev_preds for y in x]) CoNLL.write_doc2conll(dev_batch.doc, system_pred_file) _, _, dev_score = scorer.score(system_pred_file, gold_file) train_loss = train_loss / args[ 'eval_interval'] # avg loss per batch logger.info( "step {}: train_loss = {:.6f}, dev_score = {:.4f}".format( global_step, train_loss, dev_score)) train_loss = 0 # save best model if len(dev_score_history ) == 0 or dev_score > max(dev_score_history): last_best_step = global_step trainer.save(model_file) logger.info("new best model saved.") best_dev_preds = dev_preds dev_score_history += [dev_score] if global_step - last_best_step >= args['max_steps_before_stop']: if not using_amsgrad: logger.info("Switching to AMSGrad") last_best_step = global_step using_amsgrad = True trainer.optimizer = optim.Adam(trainer.model.parameters(), amsgrad=True, lr=args['lr'], betas=(.9, args['beta2']), eps=1e-6) else: do_break = True break if global_step >= args['max_steps']: do_break = True break if do_break: break train_batch.reshuffle() logger.info("Training ended with {} steps.".format(global_step)) best_f, best_eval = max(dev_score_history) * 100, np.argmax( dev_score_history) + 1 logger.info("Best dev F1 = {:.2f}, at iteration = {}".format( best_f, best_eval * args['eval_interval']))
def train(args): utils.ensure_dir(args['save_dir']) model_file = args['save_dir'] + '/' + args['save_name'] if args['save_name'] is not None \ else '{}/{}_parser.pt'.format(args['save_dir'], args['shorthand']) # load pretrained vectors if needed pretrain = None if args['pretrain']: vec_file = args['wordvec_file'] if args['wordvec_file'] else utils.get_wordvec_file(args['wordvec_dir'], args['shorthand']) pretrain_file = '{}/{}.pretrain.pt'.format(args['save_dir'], args['shorthand']) pretrain = Pretrain(pretrain_file, vec_file, args['pretrain_max_vocab']) # load data print("Loading data with batch size {}...".format(args['batch_size'])) train_doc = Document(CoNLL.conll2dict(input_file=args['train_file'])) train_batch = DataLoader(train_doc, args['batch_size'], args, pretrain, evaluation=False) vocab = train_batch.vocab dev_doc = Document(CoNLL.conll2dict(input_file=args['eval_file'])) dev_batch = DataLoader(dev_doc, args['batch_size'], args, pretrain, vocab=vocab, evaluation=True, sort_during_eval=True) # pred and gold path system_pred_file = args['output_file'] gold_file = args['gold_file'] # skip training if the language does not have training or dev data if len(train_batch) == 0 or len(dev_batch) == 0: print("Skip training because no data available...") sys.exit(0) print("Training parser...") trainer = Trainer(args=args, vocab=vocab, pretrain=pretrain, use_cuda=args['cuda']) global_step = 0 max_steps = args['max_steps'] dev_score_history = [] best_dev_preds = [] current_lr = args['lr'] global_start_time = time.time() format_str = '{}: step {}/{}, loss = {:.6f} ({:.3f} sec/batch), lr: {:.6f}' using_amsgrad = False last_best_step = 0 # start training train_loss = 0 while True: do_break = False for i, batch in enumerate(train_batch): start_time = time.time() global_step += 1 loss = trainer.update(batch, eval=False) # update step train_loss += loss if global_step % args['log_step'] == 0: duration = time.time() - start_time print(format_str.format(datetime.now().strftime("%Y-%m-%d %H:%M:%S"), global_step,\ max_steps, loss, duration, current_lr)) if global_step % args['eval_interval'] == 0: # eval on dev print("Evaluating on dev set...") dev_preds = [] for batch in dev_batch: preds = trainer.predict(batch) dev_preds += preds dev_preds = utils.unsort(dev_preds, dev_batch.data_orig_idx) dev_batch.doc.set([HEAD, DEPREL], [y for x in dev_preds for y in x]) CoNLL.dict2conll(dev_batch.doc.to_dict(), system_pred_file) _, _, dev_score = scorer.score(system_pred_file, gold_file) train_loss = train_loss / args['eval_interval'] # avg loss per batch print("step {}: train_loss = {:.6f}, dev_score = {:.4f}".format(global_step, train_loss, dev_score)) train_loss = 0 # save best model if len(dev_score_history) == 0 or dev_score > max(dev_score_history): last_best_step = global_step trainer.save(model_file) print("new best model saved.") best_dev_preds = dev_preds dev_score_history += [dev_score] print("") if global_step - last_best_step >= args['max_steps_before_stop']: if not using_amsgrad: print("Switching to AMSGrad") last_best_step = global_step using_amsgrad = True trainer.optimizer = optim.Adam(trainer.model.parameters(), amsgrad=True, lr=args['lr'], betas=(.9, args['beta2']), eps=1e-6) else: do_break = True break if global_step >= args['max_steps']: do_break = True break if do_break: break train_batch.reshuffle() print("Training ended with {} steps.".format(global_step)) best_f, best_eval = max(dev_score_history)*100, np.argmax(dev_score_history)+1 print("Best dev F1 = {:.2f}, at iteration = {}".format(best_f, best_eval * args['eval_interval']))
def _set_up_model(self, config, use_gpu): self._pretrain = Pretrain( config['pretrain_path']) if 'pretrain_path' in config else None self._trainer = Trainer(pretrain=self.pretrain, model_file=config['model_path'], use_cuda=use_gpu)
def _set_up_model(self, config, use_gpu): self._pretagged = config.get('pretagged') self._pretrain = Pretrain(config['pretrain_path']) self._trainer = Trainer(pretrain=self.pretrain, model_file=config['model_path'], use_cuda=use_gpu)