Пример #1
0
def test_empty_intensity_table():
    x = [1, 2]
    y = [2, 3]
    z = [1, 1]
    r = [1, 1]
    spot_attributes = pd.MultiIndex.from_arrays([x, y, z, r],
                                                names=('x', 'y', 'z', 'r'))
    empty = IntensityTable.empty_intensity_table(spot_attributes, 2, 2)
    assert empty.shape == (2, 2, 2)
    assert np.sum(empty.values) == 0
Пример #2
0
def measure_spot_intensities(
    data_image: ImageStack,
    spot_attributes: SpotAttributes,
    measurement_function: Callable[[Sequence], Number],
    radius_is_gyration: bool = False,
) -> IntensityTable:
    """given spots found from a reference image, find those spots across a data_image

    Parameters
    ----------
    data_image : ImageStack
        ImageStack containing multiple volumes for which spots' intensities must be calculated
    spot_attributes : pd.Dataframe
        Locations and radii of spots
    measurement_function : Callable[[Sequence], Number])
        Function to apply over the spot volumes to identify the intensity (e.g. max, mean, ...)
    radius_is_gyration : bool
        if True, indicates that the radius corresponds to radius of gyration, which is a function of
        spot intensity, but typically is a smaller unit than the sigma generated by blob_log.
        In this case, the spot's bounding box is rounded up instead of down when measuring
        intensity. (default False)

    Returns
    -------
    IntensityTable :
        3d tensor of (spot, channel, round) information for each coded spot

    """

    # determine the shape of the intensity table
    n_ch = data_image.shape[Indices.CH]
    n_round = data_image.shape[Indices.ROUND]

    # construct the empty intensity table
    intensity_table = IntensityTable.empty_intensity_table(
        spot_attributes=spot_attributes,
        n_ch=n_ch,
        n_round=n_round,
    )

    # fill the intensity table
    indices = product(range(n_ch), range(n_round))
    for c, r in indices:
        image, _ = data_image.get_slice({Indices.CH: c, Indices.ROUND: r})
        blob_intensities: pd.Series = measure_spot_intensity(
            image,
            spot_attributes,
            measurement_function,
            radius_is_gyration=radius_is_gyration)
        intensity_table[:, c, r] = blob_intensities

    return intensity_table
Пример #3
0
    def _measure_spot_intensities(
            self, stack: ImageStack,
            spot_attributes: pd.DataFrame) -> IntensityTable:

        n_ch = stack.shape[Indices.CH]
        n_hyb = stack.shape[Indices.HYB]
        spot_attribute_index = dataframe_to_multiindex(spot_attributes)
        intensity_table = IntensityTable.empty_intensity_table(
            spot_attribute_index, n_ch, n_hyb)

        indices = product(range(n_ch), range(n_hyb))
        for c, h in indices:
            image, _ = stack.get_slice({Indices.CH: c, Indices.HYB: h})
            blob_intensities: pd.Series = self._measure_blob_intensity(
                image, spot_attributes, self.measurement_function)
            intensity_table[:, c, h] = blob_intensities

        return intensity_table
Пример #4
0
def concatenate_spot_attributes_to_intensities(
    spot_attributes: Sequence[Tuple[SpotAttributes, Dict[Indices, int]]]
) -> IntensityTable:
    """
    Merge multiple spot attributes frames into a single IntensityTable without merging across
    channels and imaging rounds

    Parameters
    ----------
    spot_attributes : Sequence[Tuple[SpotAttributes, Dict[Indices, int]]]
        A sequence of SpotAttribute objects and the Indices (channel, round) that each object is
        associated with.

    Returns
    -------
    IntensityTable :
        concatenated input SpotAttributes, converted to an IntensityTable object

    """
    n_ch: int = max(inds[Indices.CH] for _, inds in spot_attributes) + 1
    n_round: int = max(inds[Indices.ROUND] for _, inds in spot_attributes) + 1

    all_spots = pd.concat([sa.data for sa, inds in spot_attributes])
    # this drop call ensures only x, y, z, radius, and quality, are passed to the IntensityTable
    features_coordinates = all_spots.drop(['spot_id', 'intensity'], axis=1)

    intensity_table = IntensityTable.empty_intensity_table(
        SpotAttributes(features_coordinates),
        n_ch,
        n_round,
    )

    i = 0
    for attrs, inds in spot_attributes:
        for _, row in attrs.data.iterrows():
            intensity_table[i, inds[Indices.CH],
                            inds[Indices.ROUND]] = row['intensity']
            i += 1

    return intensity_table