Пример #1
0
            if i%100 == 0:
                train_stories_shuf = []
                train_orders_shuf = []
                index_shuf = list(range(len(train_stories)))
                shuffle(index_shuf)
                for j in index_shuf:
                    train_stories_shuf.append(train_stories[j])
                    train_orders_shuf.append(train_orders[j])
            
            inst_story = train_stories_shuf[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]
            inst_order = train_orders_shuf[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]
            feed_dict = {story: inst_story, order: inst_order}
            _, current_loss = sess.run([opt_op, loss], feed_dict=feed_dict)

            total_loss += current_loss

        print(' Train loss:', total_loss / n)

        train_feed_dict = {story: train_stories, order: train_orders}
        train_predicted = sess.run(predict, feed_dict=train_feed_dict)
        train_accuracy = nn.calculate_accuracy(train_orders, train_predicted)
        print(' Train accuracy:', train_accuracy)
        
        dev_feed_dict = {story: dev_stories, order: dev_orders}
        dev_predicted = sess.run(predict, feed_dict=dev_feed_dict)
        dev_accuracy = nn.calculate_accuracy(dev_orders, dev_predicted)
        print(' Dev accuracy:', dev_accuracy)
        print(time.time()-t)
        
    
    nn.save_model(sess)
Пример #2
0
                    order: cur_batch.as_np_orders(),
                    story_sent_lens: cur_batch.as_np_sent_lens()
                }
                _, current_loss = sess.run([opt_op, loss], feed_dict=feed_dict)
                total_loss += current_loss

            print(' Train loss:', total_loss / n)

            t_ords = train_stories.as_np_orders()
            train_feed_dict = {
                story: train_stories.as_np_sents(),
                order: t_ords,
                story_sent_lens: train_stories.as_np_sent_lens()
            }
            train_predicted = sess.run(predict, feed_dict=train_feed_dict)
            train_accuracy = nn.calculate_accuracy(t_ords, train_predicted)
            print(' Train accuracy:', train_accuracy)

            d_ords = dev_stories.as_np_orders()
            dev_feed_dict = {
                story: dev_stories.as_np_sents(),
                order: d_ords,
                story_sent_lens: dev_stories.as_np_sent_lens()
            }
            dev_predicted = sess.run(predict, feed_dict=dev_feed_dict)
            dev_accuracy = nn.calculate_accuracy(d_ords, dev_predicted)
            print(' Dev accuracy:', dev_accuracy)

        model_name = 'e_size' + str(embedding_size) + 'h_size' + str(
            hidden_size) + 'lr' + str(learning_rate)
        results_summary = 'embedding size: ' + str(embedding_size) + \