Пример #1
0
    def test_variance(self):
        """Assume degree of freedom = 0"""
        l = [1, 2, 3, 4, 5, 5, 4, 3, 3, 1, 2]
        my_value = st.variance(l)
        numpy_value = np.var(l)

        self.assertEquals(my_value, numpy_value)
Пример #2
0
 def testVariance(self):
     data = [1, 2, 3]
     assert stats.mean(data) == 2
     self.assertEqual(stats.pvariance(data), 2/3)
     self.assertEqual(stats.variance(data), 1.0)
     self.assertEqual(stats.pstdev(data), math.sqrt(2/3))
     self.assertEqual(stats.stdev(data), 1.0)
Пример #3
0
def directional_variance(data: List[Vector], w: Vector) -> float:
    """
    Given a dataset and a vector w from which to take a direction, return the variance in the data along that direction
    """
    dir_w = direction(w)
    # key insight: the dot product of two orthogonal vectors is zero. dot product against a magnitude vector is the portion 
    # of the magnitude of the query vector in THAT direction
    dot_projections: Vector = [dot(v, dir_w) for v in data]
    return variance(dot_projections)  # books code doesn't center mean but that should be ok, we already centered it
Пример #4
0
 def clustered_mismatch_variance(self, cluster_count: int) -> float:
     """
     Returns the variance between the mismatch clusters. The
     raw cluster mismatches can be retrieved with the
     `clustered_mismatches` method. `cluster_count` controls
     the number of clusters used.
     """
     return variance(
         np.array(self.clustered_mismatches(cluster_count=cluster_count)),
         sample=False,
     )
Пример #5
0
def print_testcase(variablePrefix, i, count, values_mean, values_stdDev,
                   values_ordering, weights_mean, weights_stdDev,
                   weights_ordering):
    from stats import mean, variance, sqrt_float
    # calculate values

    values = generate_numbers(count, values_mean, values_stdDev,
                              values_ordering)
    weights = generate_weights(count, weights_mean, weights_stdDev,
                               weights_ordering)

    m = mean(values, weights)
    v = variance(values, weights, m)
    stdDev = sqrt_float(v)

    weightedValues = []
    for value, weight in zip(values, weights):
        weightedValues.append(value)
        weightedValues.append(weight)

    # output values
    print("// Generated values with parameters:")
    print("// Count = {}".format(count))
    print("// values_mean = {:e}; values_stdDev = {:e}; values_ordering = {}".
          format(values_mean, values_stdDev, values_ordering))
    print(
        "// weights_mean = {:e}; weights_stdDev = {:e}; weights_ordering = {}".
        format(weights_mean, weights_stdDev, weights_ordering))

    print("private static final long {}Mean{} = {}; // approx ~ {:e}".format(
        variablePrefix, i, export(float(m)), float(m)))

    print("private static final long {}StdDev{} = {}; // approx ~ {:e}".format(
        variablePrefix, i, export(stdDev), stdDev))

    print("private static final long[] {}WeightedValues{} = {};".format(
        variablePrefix, i, export_series(weightedValues)))

    print("")
Пример #6
0
def print_testcase(variablePrefix, i, count, values_mean, values_stdDev,
        values_ordering, weights_mean, weights_stdDev, weights_ordering):

   from stats import mean, variance, sqrt_float
   # calculate values
   
   values = generate_numbers(count, values_mean,
             values_stdDev, values_ordering)
   weights = generate_weights(count, weights_mean,
              weights_stdDev, weights_ordering)
   
   m = mean(values, weights)
   v = variance(values, weights, m)
   stdDev = sqrt_float(v)
   
   weightedValues = []
   for value, weight in zip(values, weights):
       weightedValues.append(value)
       weightedValues.append(weight)
   
   # output values
   print("// Generated values with parameters:")
   print("// Count = {}".format(count))
   print("// values_mean = {:e}; values_stdDev = {:e}; values_ordering = {}"
      .format(values_mean, values_stdDev, values_ordering))
   print("// weights_mean = {:e}; weights_stdDev = {:e}; weights_ordering = {}"
      .format(weights_mean, weights_stdDev, weights_ordering))


   print("private static final long {}Mean{} = {}; // approx ~ {:e}"
      .format(variablePrefix, i, export(float(m)), float(m)))
   
   print("private static final long {}StdDev{} = {}; // approx ~ {:e}"
      .format(variablePrefix, i, export(stdDev), stdDev))

   print("private static final long[] {}WeightedValues{} = {};"
      .format(variablePrefix, i, export_series(weightedValues)))
   
   print("")
def getSignalCoherenceError(downSampledFrequency, rawData = rawData):
	downSampled = fftDataExtraction.downSample(rawData, rawSps, downSampledFrequency, interpolate = True)#[int(random()*100):]
	#downSampled = downSampled[:int(downSampledFrequency)/2]
	#downSampled = downSampled[:40]
	highSamples = downSampled[::2]
	lowSamples = downSampled[1::2]

	times = map(lambda x: x/downSampledFrequency, range(len(downSampled)))
	highTimes = times[::2]
	lowTimes = times[1::2]
	
	differences = map(lambda x: (x[0]-x[1])**1.0, zip(highSamples, lowSamples))
	
	slope, yint = stats.lineOfBestFit(highTimes, differences)
	#return slope
	#return abs(slope)
	#return 1.0 / slope
	#return max(differences) - min(differences)
	
	#derivSquared = sum([(differences[i+1] - differences[i])**2.0 for i in range(len(differences)-1)])
	#return derivSquared
	
	return stats.variance(differences)
Пример #8
0
median = st.median(A)
print("A's median = ", median)

quantile = st.quantile(A, 0.2)
print("A's 20% quantile = ", quantile)

quantile = st.quantile(A, 0.9)
print("A's 90% quantile = ", quantile)

mode = st.mode(A)
print("A's mode = ", mode)

data_range = st.data_range(A)
print("A's range = ", data_range)

variance = st.variance(A)
print("A's variance = ", variance)

standard_deviation = st.standard_deviation(A)
print("A's standard deviation = ", standard_deviation)

interquartile_range = st.interquartile_range(A)
print("A's interquartile range of 25% ~ 75% = ", interquartile_range)

x = [-2, -1, 0, 1, 2]
y = [2, 1, 0, 1, 2]

correlation = st.correlation(x, y)
print("correlation = ", correlation)
Пример #9
0
 def test_variance_single_value_is_zero(self):
     self.assertEqual(0.0, variance([0.0]))
     self.assertEqual(0.0, variance([99.999]))
Пример #10
0
import random
import matplotlib.pyplot as plt
import stats
import numpy
import math


def generoValoresEmpiricos(matrizValores):
    x = random.random()
    for i in range(0, len(matrizValores)):
        if (matrizValores[i][3] >= x):
            x = matrizValores[i][0]
    return x


cantNum = 1000
matrizValores = [[1, 15, 0.15, 0.15], [2, 15, 0.15, 0.3], [3, 17, 0.17, 0.52],
                 [4, 12, 0.12, 0.64], [5, 20, 0.2, 0.84], [6, 16, 0.16, 1]]

for j in range(0, 2):
    valores = []
    for i in range(0, cantNum):
        valores.append(generoValoresEmpiricos(matrizValores))
    print("\nMuestra Nro ", j + 1)
    print("La Esperanza de la muestra es =", stats.mean(valores))
    print("La Varianza es = ", stats.variance(valores))
    plt.hist(valores, edgecolor='black', linewidth=1, alpha=0.5)
    plt.show()
Пример #11
0
        covariances = []
        for i in range(1, sampleCount):
            covariance = 0
            X1 = sampleList[i - 1]  #list of values in the first sample
            X2 = sampleList[i]  #list of values in the second sample
            u1 = sampleMeans[i - 1]  #mean of the first sample
            u2 = sampleMeans[i]  #mean of the second sample
            for index in range(0, sampleLength):
                covariance += ((X1[index] - u1) *
                               (X2[index] - u2)) / sampleLength
            covariances = covariances + [covariance]
        #Now we calculate correlations between each sample to see if they approach zero.
        #If they approach zero the initial transient is vanished
        correlations = []
        for i in range(1, sampleCount):
            X1_variance = stats.variance(sampleList[i - 1])
            X2_variance = stats.variance(sampleList[i])
            try:
                correlation = covariances[i - 1] / math.sqrt(
                    X1_variance * X2_variance)
                correlations = correlations + [correlation]
            except:
                #Division with zero has occured, so correlation set to zero
                correlations = correlations + [0]
        print(correlations)
"""
Here we look at the average queue lengths with each of the configurations.
"""
"""

interarrival_time is either exp(25) or exp(22.5)
Пример #12
0
 def test_variance_typical_values(self):
     """variance of some typical values"""
     self.assertEqual(0.0, variance([10.0, 10.0, 10.0, 10.0, 10.0]))
     self.assertEqual(2.0, variance([1, 2, 3, 4, 5]))
     self.assertEqual(8.0, variance([10, 2, 8, 4, 6]))
Пример #13
0
 def testVar(self):
     sx2 = stats.variance(self.xdata)
     sy2 = stats.variance(self.ydata)
     self.assertAlmostEqual(sx2, 11004687 / 983040, places=self.places)
     self.assertAlmostEqual(sy2, 4647 / 3840, places=self.places)
Пример #14
0
don't have to write lots of code over and over for each problem.
"""

# CONFIG
PROJECT_ROOT = '..'  # relative location pointing to utils/ and stats.py

# REST OF FILE
import sys

# allows import of project files (idk how else to do this)
sys.path.insert(1, PROJECT_ROOT)
from utils.webassign import array_from_shitstring
from stats import variance, standard_deviation

data = array_from_shitstring(
    "85  	105  	130  	160  	180  	195  	134  	145  	214  	105  	145  151  	153  	135  	87  	99  	94  	119  	129"
)  # put your data here
data.sort()
print("Oxidation induction time (min): {}".format(data))

data_variance = variance(data)
data_standard_deviation = standard_deviation(data)
print("Sample variance: {}".format(data_variance))
print("Standard deviation: {}".format(data_standard_deviation))

data_to_hours = [value / 60 for value in data]
data_variance_in_hours = variance(data_to_hours)
standard_deviation_in_hours = standard_deviation(data_to_hours)
print("Sample variance (hrs): {}".format(data_variance_in_hours))
print("Standard deviation (hrs): {}".format(standard_deviation_in_hours))
Пример #15
0
 def test_variance_single_value_is_zero(self):
     """variance of a singleton list should be zero"""
     self.assertEqual(0.0, variance([0.0]))
     self.assertEqual(0.0, variance([99.999]))
Пример #16
0
 def testVariance(self):
     self.assertEquals(self.population_variance,
                       stats.variance(self.data, True))
     self.assertEquals(self.sample_variance,
                       stats.variance(self.data[:len(self.data) / 2]))
Пример #17
0
def register_sample (app, app_id, tag, day_of_the_week = None):

	user = User.objects.filter(app = app,
							   app_id = app_id).first()

	## Clear all the events of that tag
	## Then recreate them from the new data
	events = Event.objects.filter(user = user, tag = tag)
	if day_of_the_week is not None:
		events = events.filter(day_of_week = day_of_the_week)
	for event in events:
		event.is_active = False
		event.save()

	app = importlib.import_module(user.app + "." + user.app)
	event_times = getattr(app, "%s_times" % tag)(app_id, day_of_the_week = day_of_the_week)
	if len(event_times) < 2: 
		return
	if len(event_times[0]) < 2: 
		return

	pmf = stats.event_pmf(event_times, 1440)
	pmf_average = stats.average(pmf)

	if pmf_average < minimum_pmf_mean(tag):
		## All weak probabilities. Only outlier events.
		return

	pmf_variance = stats.variance(pmf, average = pmf_average)
	pmf_std = stats.standard_deviation(pmf, variance = pmf_variance)

	in_event = False
	event_start_minutes = []
	event_end_minutes = []
	event_probabilites = []
	for minute in range(0,1440):
		if pmf[minute] > pmf_average + pmf_variance:
			if in_event is False:
				event_start_minutes.append(minute)
				in_event = True
		else:
			if in_event is True:
				event_end_minutes.append(minute)
				in_event = False


	if len(event_start_minutes) > len(event_end_minutes): ## Assume the last event started at night and ends in the morning
		event_start_minutes[0] = event_start_minutes[len(event_start_minutes) - 1]
		del event_start_minutes[len(event_start_minutes) - 1]

	## If events are too close together, combined them.
	for index in range(0, len(event_end_minutes)):
		if index + 1 >= len(event_start_minutes):
			break

		event_end_time = event_end_minutes[index]
		next_event_start_time = event_start_minutes[index + 1]
		time_between_event = next_event_start_time - event_end_time
		if time_between_event < minimum_time_between_event(tag):
			del event_end_minutes[index]
			del event_start_minutes[index + 1]


	for index in range(0, len(event_start_minutes)):
		start_minute = event_start_minutes[index]
		end_minute = event_end_minutes[index]

		if start_minute < end_minute:
			event_probability_set = pmf[start_minute:end_minute]
		else:
			event_probability_set = pmf[start_minute:1439]
			event_probability_set.extend(pmf[0:end_minute])
		event_average_probablity = stats.average(event_probability_set)
		event_probability_variance = stats.variance(event_probability_set, average = event_average_probablity)

		fringe_start_time = start_minute - fringe_time_for_event(tag)
		if fringe_start_time < 0:
			fringe_start_time = 1440 + fringe_start_time

		fringe_end_time = end_minute + fringe_time_for_event(tag)
		if fringe_end_time > 1440:
			fringe_end_time = fringe_end_time - 1440

		if fringe_end_time > fringe_start_time:
			fringe_pmf = pmf[fringe_start_time:fringe_end_time]
		else:
			fringe_pmf = pmf[fringe_start_time:1439]
			fringe_pmf.extend(pmf[0:fringe_end_time])

		fringe_average_probability = stats.average(fringe_pmf)
		fringe_variance = stats.variance(fringe_pmf, average = fringe_average_probability)

		start_hour = float(start_minute)/60.0
		end_hour = float(end_minute)/60.0

		e = Event.objects.create(user = user,
								 tag = tag,
								 start_time = start_hour, 
								 end_time = end_hour,
								 day_of_week = day_of_the_week,
								 probability = event_average_probablity,
								 probability_variance = event_probability_variance,
								 fringe_probability = fringe_average_probability,
								 fringe_variance = fringe_variance)
		e.save()
Пример #18
0
d1 = Dog('fido', 3, 'male')
d2 = Dog('sally', 5, 'female')
print('before', d1)
d1.eat()
print('after eating', d1)
d1.play()
print('after playing', d1)

# instructions
# read in dogs.txt
# create a dog for
# every entry
# add all dogs
# to a dogs array
# find the average age
# of these dogs
# and the standard deviation
 
doglist = []
dogages = []

with open('dogs.txt') as f:
    for line in f:
    dog = line.strip().split(',')
    doglist.append(Dog(dog[0], int(dog[1]), dog[2]))
    dogages.append(int(dog[1]))

avg_age = s.mean(dogages)
age_std_dev = s.variance(dogages)**(1 / 2)
print(doglist, avg_age, age_std_dev) 
Пример #19
0
import stats

def cargoArchivos():
    datos1=pd.read_excel("Datos 01.xlsx",header=None)
    listaDatos1={col:datos1[col].dropna().tolist() for col in datos1.columns}[0]
    datos2=pd.read_excel("Datos 02.xlsx",header=None)
    listaDatos2={col:datos2[col].dropna().tolist() for col in datos2.columns}[0]
    datos3=pd.read_excel("Datos 03.xlsx",header=None)
    listaDatos3={col:datos3[col].dropna().tolist() for col in datos3.columns}[0]
    return listaDatos1,listaDatos2,listaDatos3

datos1,datos2,datos3=cargoArchivos()

print("\nDatos Muestra 1")
esperanzaDatos1 = stats.mean(datos1)
varianzaDatos1 = stats.variance(datos1)
lambdaa=esperanzaDatos1
print("La Esperanza Matematica de la muestra es = ",esperanzaDatos1)
print("La Varianza Matematica de la muestra es = ",varianzaDatos1)
print("El lambda de la muestra es = ",lambdaa)
plt.hist(datos1, edgecolor='black', linewidth=1,density=1,label=(f'Lambda = {round(lambdaa,0)}'))
y = [((math.exp(-6) * (6 ** x)) / (math.factorial(x))) for x in datos1]
plt.plot(datos1,y,'o')
plt.grid(True)
plt.ylim(0,0.25)
plt.text(9,0.15,"Amarrilo Dist.Poisson Lambda=6",color='black')
plt.legend(title="Parametros")
plt.title("Datos Muestra 1 - Distribucion Poisson")
plt.xlabel("Intervalos")
plt.ylabel("Frecuencia")
plt.show()
Пример #20
0
 def testVariance(self):
     self.assertEquals(self.population_variance, stats.variance(self.data, True))
     self.assertEquals(self.sample_variance, stats.variance(self.data[:len(self.data)/2]))
Пример #21
0
 def test_variance_throws_exception(self):
     with self.assertRaises(TypeError):
         var = variance([])
Пример #22
0
 def test_variance(self):
     self.assertEqual(stats.variance([1, 2, 3, 4, 5]), 2.5)
Пример #23
0
"""
This file contains some default imports and commonly used functions so that you
don't have to write lots of code over and over for each problem.
"""

# CONFIG
PROJECT_ROOT = '..'  # relative location pointing to utils/ and stats.py

# REST OF FILE
import sys

# allows import of project files (idk how else to do this)
sys.path.insert(1, PROJECT_ROOT)
from utils.webassign import array_from_shitstring_floats
from stats import get_range, variance, standard_deviation

o2_consumption = array_from_shitstring_floats(
    '29.6	 49.4	 31.0	 28.4	 28.8	 25.4	 34.0	 29.8	 23.8	 30.1')
print("O2 Consumption: {}".format(o2_consumption))

print("Sample range: {}".format(get_range(o2_consumption)))
print("Sample variance: {}".format(variance(o2_consumption)))
print("Standard deviation: {}".format(standard_deviation(o2_consumption)))
Пример #24
0
import numpy as np
import stats

# Load the column at the ith column, at the i-1 index
def load_col(fname, i):
    return np.loadtxt(fname, usecols=(i-1,))

y = load_col("ludoarray.txt", 3)
print("Column 3 (y) is: {}".format(y))

# Calculate the mean, variance, and std_dev of y
mean = stats.mean(y)
variance = stats.variance(y)
std_dev = stats.std_dev(y)

# Print the result of the calculations
print("The mean of y is {:f} \nThe variance of y is {:f} \nThe std deviation of \
y is {:f}".format(mean,variance,std_dev))
Пример #25
0
 def test_variance_throws_exception(self):
     """variance of an empty list should raise an exception"""
     with self.assertRaises(ValueError):
         var = variance([])
Пример #26
0
#내가 만든 directory에 path만들기 
import sys
sys.path.append('C:\\mypython')
sys.path

#잘못된 path 지우기
sys.path.remove('C:\\mypython')

#########################################
[문제84] stats 모듈에 평균, 분산, 표준편차함수를 사용할수 있는 프로그램을 생성하세요.

>>> import stats
>>> stats.mean(1,2,3,4,5)
3.0
>>> stats.variance(1,2,3,4,5)
2.5
>>> stats.stddev(1,2,3,4,5)
1.5811388300841898

#stats에 각 함수를 포함하도록 하기

########## c:\python\stats.py 답
import math

def mean (*arg):
    return sum(arg)/len(arg)

def variance(*arg):
    total = 0
    m = mean(*arg)
Пример #27
0
import sys

# allows import of project files (idk how else to do this)
sys.path.insert(1, '..')
from utils.webassign import array_from_shitstring
from stats import mean, deviation_from_mean, variance, standard_deviation

youngs_mod = array_from_shitstring(" 116.6 115.8 114.9 115.3 115.6 ")
youngs_mod.sort()
print("Young's Mod: {}".format(youngs_mod))

sample_mean = mean(youngs_mod)
print("Young's Mod (mean): {}".format(sample_mean))

print("Deviation from mean:")
deviation_list = deviation_from_mean(youngs_mod)
for data_point, deviation in zip(youngs_mod, deviation_list):
    print("Sample: {0}, deviation from mean: {1}".format(
        data_point, deviation))

my_variance = variance(youngs_mod)
print("Sample variance: {}".format(my_variance))
print("Standard deviation: {}".format(standard_deviation(youngs_mod)))
import stats 

stats = stats.Stats()

list1 = [1,3,5,6]
list2 = [1,3,4,5]

total1 = stats.total(list1)  
total2 = stats.total(list2)  
mean1 = stats.mean(list1)  
mean2 = stats.mean(list2)  
mode1 = stats.mode(list1)  
mode2 = stats.mode(list2)  
median1 = stats.median(list1)  
median2 = stats.median(list2)  
variance1 = stats.variance(list1)  
variance2 = stats.variance(list2)  
standard_deviation1 = stats.SD(list1)  
standard_deviation2 = stats.SD(list2)  
covariance_pop = stats.covariance(list1, list2)  
covariance_sample = stats.covariance(list1, list2, True)  
correlation = stats.correlation(list1, list2)  
skewness_pop1 = stats.skewness(list1)  
skewness_pop2 = stats.skewness(list2)  
skewness_sample1 = stats.skewness(list1, True)  
skewness_sample2 = stats.skewness(list2, True)  
kurtosis_pop1 = stats.kurtosis(list1)  
kurtosis_pop2 = stats.kurtosis(list2)  
kurtosis_sample1 = stats.kurtosis(list1, True)  
kurtosis_sample2 = stats.kurtosis(list2, True)