Пример #1
0
 def __init__(self, kdeType):
     """
     Initialize the logger and ensure the requested KDE type exists.
     
     This uses the `statsmodels.nonparametric.kernel_density` library
     
     """
     LOG.info("Initialising KDEParameters")
     kernels = kernel_switch.keys()
     if kdeType in kernels:
         LOG.debug("Using {0} to generate distribution".format(kdeType))
         self.kdeType = kdeType
     else:
         LOG.error("Invalid kernel type: {0}".format(kdeType))
         raise NotImplementedError(
             "Invalid kernel type: {0}".format(kdeType))
Пример #2
0
 def __init__(self, kdeType):
     """
     Initialize the logger and ensure the requested KDE type exists.
     
     This uses the `statsmodels.nonparametric.kernel_density` library
     
     """
     LOG.info("Initialising KDEParameters")
     kernels = kernel_switch.keys()
     if kdeType in kernels:
         LOG.debug(f"Using {kdeType} to generate distribution")
         self.kdeType = kdeType
     else:
         msg = (f"Invalid kernel type: {kdeType} \n"
                f"Valid kernels are {repr(kernels)}")
         LOG.error(msg)
         raise NotImplementedError(msg)
Пример #3
0
           color='red',
           zorder=20,
           label='Data samples',
           alpha=0.5)

ax.legend(loc='best')
ax.set_xlim([-3, 3])
ax.grid(True, zorder=-5)

# ## Comparing kernel functions

# In the example above, a Gaussian kernel was used. Several other kernels
# are also available.

from statsmodels.nonparametric.kde import kernel_switch
list(kernel_switch.keys())

# ### The available kernel functions

# Create a figure
fig = plt.figure(figsize=(12, 5))

# Enumerate every option for the kernel
for i, (ker_name, ker_class) in enumerate(kernel_switch.items()):

    # Initialize the kernel object
    kernel = ker_class()

    # Sample from the domain
    domain = kernel.domain or [-3, 3]
    x_vals = np.linspace(*domain, num=2**10)
Пример #4
0
    color='red',
    zorder=20,
    label='Data samples',
    alpha=0.5)

ax.legend(loc='best')
ax.set_xlim([-3, 3])
ax.grid(True, zorder=-5)

# ## Comparing kernel functions

# In the example above, a Gaussian kernel was used. Several other kernels
# are also available.

from statsmodels.nonparametric.kde import kernel_switch
list(kernel_switch.keys())

# ### The available kernel functions

# Create a figure
fig = plt.figure(figsize=(12, 5))

# Enumerate every option for the kernel
for i, (ker_name, ker_class) in enumerate(kernel_switch.items()):

    # Initialize the kernel object
    kernel = ker_class()

    # Sample from the domain
    domain = kernel.domain or [-3, 3]
    x_vals = np.linspace(*domain, num=2**10)