Пример #1
0
    def test_sparse(self):

        import scipy

        v = scipy.__version__.split(".")[1]
        v = int(v)
        if v < 16:
            return

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, "results")
        fname = os.path.join(rdir, "pastes.csv")

        # Dense
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula("strength ~ 1", groups="batch", re_formula="1", vc_formula=vcf, data=data)
        result = model.fit()

        # Sparse
        model2 = MixedLM.from_formula(
            "strength ~ 1", groups="batch", re_formula="1", vc_formula=vcf, use_sparse=True, data=data
        )
        result2 = model2.fit()

        assert_allclose(result.params, result2.params)
        assert_allclose(result.bse, result2.bse)
Пример #2
0
def test_summary_col():
    from statsmodels.iolib.summary2 import summary_col
    ids = [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]
    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
    # hard coded simulated y
    # ids = np.asarray(ids)
    # np.random.seed(123987)
    # y = x + np.array([-1, 0, 1])[ids - 1] + 2 * np.random.randn(len(y))
    y = np.array([
        1.727, -1.037, 2.904, 3.569, 4.629, 5.736, 6.747, 7.020, 5.624, 10.155,
        10.400, 17.164, 17.276, 14.988, 14.453
    ])
    d = {'Y': y, 'X': x, 'IDS': ids}
    d = pd.DataFrame(d)

    # provide start_params to speed up convergence
    sp1 = np.array([-1.26722599, 1.1617587, 0.19547518])
    mod1 = MixedLM.from_formula('Y ~ X', d, groups=d['IDS'])
    results1 = mod1.fit(start_params=sp1)
    sp2 = np.array([3.48416861, 0.55287862, 1.38537901])
    mod2 = MixedLM.from_formula('X ~ Y', d, groups=d['IDS'])
    results2 = mod2.fit(start_params=sp2)

    out = summary_col([results1, results2], stars=True)
    s = ('\n=============================\n              Y         X    \n'
         '-----------------------------\nGroup Var 0.1955    1.3854   \n'
         '          (0.6032)  (2.7377) \nIntercept -1.2672   3.4842*  \n'
         '          (1.6546)  (1.8882) \nX         1.1618***          \n'
         '          (0.1959)           \nY                   0.5529***\n'
         '                    (0.2080) \n=============================\n'
         'Standard errors in\nparentheses.\n* p<.1, ** p<.05, ***p<.01')
    assert_equal(str(out), s)
Пример #3
0
    def test_sparse(self):

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'pastes.csv')

        # Dense
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula(
            "strength ~ 1",
            groups="batch",
            re_formula="1",
            vc_formula=vcf,
            data=data)
        result = model.fit()

        # Sparse
        model2 = MixedLM.from_formula(
            "strength ~ 1",
            groups="batch",
            re_formula="1",
            vc_formula=vcf,
            use_sparse=True,
            data=data)
        result2 = model2.fit()

        assert_allclose(result.params, result2.params)
        assert_allclose(result.bse, result2.bse)
Пример #4
0
    def txest_vcomp_1(self):
        """
        Fit the same model using constrained random effects and variance components.
        """

        np.random.seed(4279)
        exog = np.random.normal(size=(400, 1))
        exog_re = np.random.normal(size=(400, 2))
        groups = np.kron(np.arange(100), np.ones(4))
        slopes = np.random.normal(size=(100, 2))
        slopes[:, 1] *= 2
        slopes = np.kron(slopes, np.ones((4, 1))) * exog_re
        errors = slopes.sum(1) + np.random.normal(size=400)
        endog = exog.sum(1) + errors

        free = MixedLMParams(1, 2, 0)
        free.fe_params = np.ones(1)
        free.cov_re = np.eye(2)
        free.vcomp = np.zeros(0)

        model1 = MixedLM(endog, exog, groups, exog_re=exog_re)
        result1 = model1.fit(free=free)

        exog_vc = {"a": {}, "b": {}}
        for k,group in enumerate(model1.group_labels):
            ix = model1.row_indices[group]
            exog_vc["a"][group] = exog_re[ix, 0:1]
            exog_vc["b"][group] = exog_re[ix, 1:2]
        model2 = MixedLM(endog, exog, groups, exog_vc=exog_vc)
        result2 = model2.fit()
        result2.summary()

        assert_allclose(result1.fe_params, result2.fe_params, atol=1e-4)
        assert_allclose(np.diag(result1.cov_re), result2.vcomp, atol=1e-2, rtol=1e-4)
        assert_allclose(result1.bse[[0, 1, 3]], result2.bse, atol=1e-2, rtol=1e-2)
Пример #5
0
    def do1(self, reml, irf, ds_ix):

        # No need to check independent random effects when there is
        # only one of them.
        if irf and ds_ix < 6:
            return

        irfs = "irf" if irf else "drf"
        meth = "reml" if reml else "ml"

        rslt = R_Results(meth, irfs, ds_ix)

        # Fit the model
        md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups, rslt.exog_re)
        if not irf:  # Free random effects covariance
            mdf = md.fit(gtol=1e-7, reml=reml)
        else:  # Independent random effects
            k_fe = rslt.exog_fe.shape[1]
            k_re = rslt.exog_re.shape[1]
            mdf = md.fit(reml=reml, gtol=1e-7, free=(np.ones(k_fe), np.eye(k_re)))

        assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4)
        assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4)
        assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4)

        pf = rslt.exog_fe.shape[1]
        assert_almost_equal(rslt.vcov_r, mdf.cov_params()[0:pf, 0:pf], decimal=3)

        assert_almost_equal(mdf.likeval, rslt.loglike[0], decimal=2)

        # Not supported in R
        if not irf:
            assert_almost_equal(mdf.ranef()[0], rslt.ranef_postmean, decimal=3)
            assert_almost_equal(mdf.ranef_cov()[0], rslt.ranef_condvar, decimal=3)
Пример #6
0
    def test_profile_inference(self):
        # Smoke test
        np.random.seed(9814)
        k_fe = 2
        gsize = 3
        n_grp = 100
        exog = np.random.normal(size=(n_grp * gsize, k_fe))
        exog_re = np.ones((n_grp * gsize, 1))
        groups = np.kron(np.arange(n_grp), np.ones(gsize))
        vca = np.random.normal(size=n_grp * gsize)
        vcb = np.random.normal(size=n_grp * gsize)
        errors = 0
        g_errors = np.kron(np.random.normal(size=100), np.ones(gsize))
        errors += g_errors + exog_re[:, 0]
        rc = np.random.normal(size=n_grp)
        errors += np.kron(rc, np.ones(gsize)) * vca
        rc = np.random.normal(size=n_grp)
        errors += np.kron(rc, np.ones(gsize)) * vcb
        errors += np.random.normal(size=n_grp * gsize)

        endog = exog.sum(1) + errors
        vc = {"a": {}, "b": {}}
        for k in range(n_grp):
            ii = np.flatnonzero(groups == k)
            vc["a"][k] = vca[ii][:, None]
            vc["b"][k] = vcb[ii][:, None]
        rslt = MixedLM(endog, exog, groups=groups, exog_re=exog_re, exog_vc=vc).fit()
        rslt.profile_re(0, vtype="re", dist_low=1, num_low=3, dist_high=1, num_high=3)
        rslt.profile_re("b", vtype="vc", dist_low=0.5, num_low=3, dist_high=0.5, num_high=3)
Пример #7
0
    def test_formulas(self):

        np.random.seed(2410)
        exog = np.random.normal(size=(300, 4))
        exog_re = np.random.normal(size=300)
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = exog_re * np.kron(np.random.normal(size=100), [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)

        mod1 = MixedLM(endog, exog, groups, exog_re)
        rslt1 = mod1.fit()

        df = pd.DataFrame({"endog": endog})
        for k in range(exog.shape[1]):
            df["exog%d" % k] = exog[:, k]
        df["exog_re"] = exog_re
        fml = "endog ~ 0 + exog0 + exog1 + exog2 + exog3"
        re_fml = "0 + exog_re"
        mod2 = MixedLM.from_formula(fml, df, re_formula=re_fml, groups=groups)
        rslt2 = mod2.fit()
        assert_almost_equal(rslt1.params, rslt2.params)

        # Check default variance structure, with formula.api
        exog_re = np.ones(len(endog), dtype=np.float64)
        mod3 = MixedLM(endog, exog, groups, exog_re)
        rslt3 = mod3.fit()
        from statsmodels.formula.api import mixedlm

        mod4 = mixedlm(fml, df, groups=groups)
        rslt4 = mod4.fit()
        assert_almost_equal(rslt3.params, rslt4.params)
Пример #8
0
def calcBetaLme(data_full, gain_full, loss_full, linear_full, quad_full, run_group, thrshd=None):
    """ 
    function to calculate beta parameters.
    Input: data from bold file, two list of gain, loss regressor values
        dummy variable indicating the groups,
        a threshold to idenfity the voxels inside the brain
    Output: beta coefficient, the corresponding p-values, the convergence information
    """
    T = data_full.shape[-1]
    time_by_vox = np.reshape(data_full, (-1, T)).T
    beta = np.empty([time_by_vox.shape[1],5])
    fml = "bold ~ gain + loss"
    for k in np.arange(0,time_by_vox.shape[1]):
        ## set a threshold to idenfity the voxels inside the brain
        if thrshd != None:
            if (np.mean(time_by_vox[:,k]) <= thrshd):
                beta[k, :] = [0, 0, 0, 0, 0]
            else:
                dt = pd.DataFrame({'gain':gain_full,'loss':loss_full,'run_group':run_group,
                              'ldrift':linear_full,'qdrift':quad_full,'bold':time_by_vox[:,k]})
                mod_lme = MixedLM.from_formula(fml, dt, groups=dt["run_group"])
                lme_result = mod_lme.fit()
                beta[k, :] = [lme_result.fe_params["gain"], lme_result.pvalues["gain"], 
                      lme_result.fe_params["loss"], lme_result.pvalues["loss"], lme_result.converged]
        else:
            dt = pd.DataFrame({'gain':gain_full,'loss':loss_full,'run_group':run_group,
                          'ldrift':linear_full,'qdrift':quad_full,'bold':time_by_vox[:,k]})
            mod_lme = MixedLM.from_formula(fml, dt, groups=dt["run_group"])
            lme_result = mod_lme.fit()
            beta[k, :] = [lme_result.fe_params["gain"], lme_result.pvalues["gain"], 
                  lme_result.fe_params["loss"], lme_result.pvalues["loss"], lme_result.converged]

    return beta
Пример #9
0
    def test_profile(self):

        np.random.seed(9814)
        exog = np.random.normal(size=(300, 4))
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = np.kron(np.random.normal(size=100), [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)
        mdf1 = MixedLM(endog, exog, groups).fit(niter_em=10)
        mdf1.profile_re(0, dist_low=0.1, num_low=1, dist_high=0.1, num_high=1)
Пример #10
0
    def test_dietox_slopes(self):
        # dietox data from geepack using random intercepts
        #
        # Fit in R using
        #
        # library(geepack)
        # r = lmer(Weight ~ Time + (1 + Time | Pig), data=dietox)
        # r = lmer(Weight ~ Time + (1 + Time | Pig), REML=FALSE, data=dietox)

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'dietox.csv')

        # REML
        data = pd.read_csv(fname)
        model = MixedLM.from_formula("Weight ~ Time", groups="Pig",
                                     re_formula="1 + Time", data=data)
        result = model.fit(method='powell')

        # fixef(r)
        assert_allclose(result.fe_params, np.r_[15.738650, 6.939014], rtol=1e-5)

        # sqrt(diag(vcov(r)))
        assert_allclose(result.bse[0:2], np.r_[0.5501253, 0.0798254], rtol=1e-3)

        # attr(VarCorr(r), "sc")^2
        assert_allclose(result.scale, 6.03745, rtol=1e-3)

        # as.numeric(VarCorr(r)[[1]])
        assert_allclose(result.cov_re.values.ravel(),
                        np.r_[19.4934552, 0.2938323, 0.2938323, 0.4160620],
                        rtol=1e-1)

        # logLik(r)
        assert_allclose(model.loglike(result.params_object), -2217.047, rtol=1e-5)

        # ML
        data = pd.read_csv(fname)
        model = MixedLM.from_formula("Weight ~ Time", groups="Pig",
                                     re_formula="1 + Time", data=data)
        result = model.fit(method='powell', reml=False)

        # fixef(r)
        assert_allclose(result.fe_params, np.r_[15.73863, 6.93902], rtol=1e-5)

        # sqrt(diag(vcov(r)))
        assert_allclose(result.bse[0:2], np.r_[0.54629282, 0.07926954], rtol=1e-3)

        # attr(VarCorr(r), "sc")^2
        assert_allclose(result.scale, 6.037441, rtol=1e-3)

        #  as.numeric(VarCorr(r)[[1]])
        assert_allclose(result.cov_re.values.ravel(),
                        np.r_[19.190922, 0.293568, 0.293568, 0.409695], rtol=1e-2)

        # logLik(r)
        assert_allclose(model.loglike(result.params_object), -2215.753, rtol=1e-5)
Пример #11
0
    def test_history(self):

        np.random.seed(3235)
        exog = np.random.normal(size=(300, 4))
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = np.kron(np.random.normal(size=100), [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)
        mod = MixedLM(endog, exog, groups)
        rslt = mod.fit(full_output=True)
        assert_equal(hasattr(rslt, "hist"), True)
Пример #12
0
def do1(reml, irf, ds_ix):

    # No need to check independent random effects when there is
    # only one of them.
    if irf and ds_ix < 6:
        return

    irfs = "irf" if irf else "drf"
    meth = "reml" if reml else "ml"

    rslt = R_Results(meth, irfs, ds_ix)

    # Fit the model
    md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups,
                 rslt.exog_re)
    if not irf:  # Free random effects covariance
        if np.any(np.diag(rslt.cov_re_r) < 1e-5):
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                mdf = md.fit(gtol=1e-7, reml=reml)
        else:
            mdf = md.fit(gtol=1e-7, reml=reml)

    else:  # Independent random effects
        k_fe = rslt.exog_fe.shape[1]
        k_re = rslt.exog_re.shape[1]
        free = MixedLMParams(k_fe, k_re, 0)
        free.fe_params = np.ones(k_fe)
        free.cov_re = np.eye(k_re)
        free.vcomp = np.array([])
        if np.any(np.diag(rslt.cov_re_r) < 1e-5):
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                mdf = md.fit(reml=reml, gtol=1e-7, free=free)
        else:
            mdf = md.fit(reml=reml, gtol=1e-7, free=free)

    assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4)
    assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4)
    assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4)

    k_fe = md.k_fe
    assert_almost_equal(rslt.vcov_r, mdf.cov_params()[0:k_fe, 0:k_fe],
                        decimal=3)

    assert_almost_equal(mdf.llf, rslt.loglike[0], decimal=2)

    # Not supported in R except for independent random effects
    if not irf:
        assert_almost_equal(mdf.random_effects[0], rslt.ranef_postmean,
                            decimal=3)
        assert_almost_equal(mdf.random_effects_cov[0],
                            rslt.ranef_condvar,
                            decimal=3)
Пример #13
0
    def test_dietox(self):
        # dietox data from geepack using random intercepts
        #
        # Fit in R using
        #
        # library(geepack)
        # rm = lmer(Weight ~ Time + (1 | Pig), data=dietox)
        # rm = lmer(Weight ~ Time + (1 | Pig), REML=FALSE, data=dietox)

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'dietox.csv')

        # REML
        data = pd.read_csv(fname)
        model = MixedLM.from_formula("Weight ~ Time", groups="Pig",
                                     data=data)
        result = model.fit()

        # fixef(rm)
        assert_allclose(result.fe_params, np.r_[15.723523, 6.942505], rtol=1e-5)

        # sqrt(diag(vcov(rm)))
        assert_allclose(result.bse[0:2], np.r_[0.78805374, 0.03338727], rtol=1e-5)

        # attr(VarCorr(rm), "sc")^2
        assert_allclose(result.scale, 11.36692, rtol=1e-5)

        # VarCorr(rm)[[1]][[1]]
        assert_allclose(result.cov_re, 40.39395, rtol=1e-5)

        # logLik(rm)
        assert_allclose(model.loglike(result.params_object), -2404.775, rtol=1e-5)

        # ML
        data = pd.read_csv(fname)
        model = MixedLM.from_formula("Weight ~ Time", groups="Pig",
                                     data=data)
        result = model.fit(reml=False)

        # fixef(rm)
        assert_allclose(result.fe_params, np.r_[15.723517, 6.942506], rtol=1e-5)

        # sqrt(diag(vcov(rm)))
        assert_allclose(result.bse[0:2], np.r_[0.7829397, 0.0333661], rtol=1e-5)

        # attr(VarCorr(rm), "sc")^2
        assert_allclose(result.scale, 11.35251, rtol=1e-5)

        # VarCorr(rm)[[1]][[1]]
        assert_allclose(result.cov_re, 39.82097, rtol=1e-5)

        # logLik(rm)
        assert_allclose(model.loglike(result.params_object), -2402.932, rtol=1e-5)
Пример #14
0
def test_handle_missing():

    np.random.seed(23423)
    df = np.random.normal(size=(100, 6))
    df = pd.DataFrame(df)
    df.columns = ["y", "g", "x1", "z1", "c1", "c2"]
    df["g"] = np.kron(np.arange(50), np.ones(2))
    re = np.random.normal(size=(50, 4))
    re = np.kron(re, np.ones((2, 1)))
    df["y"] = re[:, 0] + re[:, 1] * df.z1 + re[:, 2] * df.c1
    df["y"] += re[:, 3] * df.c2 + np.random.normal(size=100)
    df.loc[1, "y"] = np.NaN
    df.loc[2, "g"] = np.NaN
    df.loc[3, "x1"] = np.NaN
    df.loc[4, "z1"] = np.NaN
    df.loc[5, "c1"] = np.NaN
    df.loc[6, "c2"] = np.NaN

    fml = "y ~ x1"
    re_formula = "1 + z1"
    vc_formula = {"a": "0 + c1", "b": "0 + c2"}
    for include_re in False, True:
        for include_vc in False, True:
            kwargs = {}
            dx = df.copy()
            va = ["y", "g", "x1"]
            if include_re:
                kwargs["re_formula"] = re_formula
                va.append("z1")
            if include_vc:
                kwargs["vc_formula"] = vc_formula
                va.extend(["c1", "c2"])

            dx = dx[va].dropna()

            # Some of these models are severely misspecified with
            # small n, so produce convergence warnings.  Not relevant
            # to what we are checking here.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")

                # Drop missing externally
                model1 = MixedLM.from_formula(
                    fml, groups="g", data=dx, **kwargs)
                result1 = model1.fit()

                # MixeLM handles missing
                model2 = MixedLM.from_formula(
                    fml, groups="g", data=df, missing='drop', **kwargs)
                result2 = model2.fit()

                assert_allclose(result1.params, result2.params)
                assert_allclose(result1.bse, result2.bse)
                assert_equal(len(result1.fittedvalues), result1.nobs)
Пример #15
0
 def test_profile(self):
     # Smoke test
     np.random.seed(9814)
     k_fe = 4
     gsize = 3
     n_grp = 100
     exog = np.random.normal(size=(n_grp * gsize, k_fe))
     groups = np.kron(np.arange(n_grp), np.ones(gsize))
     g_errors = np.kron(np.random.normal(size=100), np.ones(gsize))
     endog = exog.sum(1) + g_errors + np.random.normal(size=n_grp * gsize)
     rslt = MixedLM(endog, exog, groups).fit(niter_em=10)
     prof = rslt.profile_re(0, dist_low=0.1, num_low=1, dist_high=0.1,
                            num_high=1)
Пример #16
0
    def test_vcomp_formula(self):

        np.random.seed(6241)
        n = 800
        exog = np.random.normal(size=(n, 2))
        exog[:, 0] = 1
        ex_vc = []
        groups = np.kron(np.arange(n / 4), np.ones(4))
        errors = 0
        exog_re = np.random.normal(size=(n, 2))
        slopes = np.random.normal(size=(n // 4, 2))
        slopes = np.kron(slopes, np.ones((4, 1))) * exog_re
        errors += slopes.sum(1)
        ex_vc = np.random.normal(size=(n, 4))
        slopes = np.random.normal(size=(n // 4, 4))
        slopes[:, 2:] *= 2
        slopes = np.kron(slopes, np.ones((4, 1))) * ex_vc
        errors += slopes.sum(1)
        errors += np.random.normal(size=n)
        endog = exog.sum(1) + errors

        exog_vc = {"a": {}, "b": {}}
        for k, group in enumerate(range(int(n / 4))):
            ix = np.flatnonzero(groups == group)
            exog_vc["a"][group] = ex_vc[ix, 0:2]
            exog_vc["b"][group] = ex_vc[ix, 2:]
        model1 = MixedLM(endog, exog, groups, exog_re=exog_re, exog_vc=exog_vc)
        result1 = model1.fit()

        df = pd.DataFrame(exog[:, 1:], columns=["x1"])
        df["y"] = endog
        df["re1"] = exog_re[:, 0]
        df["re2"] = exog_re[:, 1]
        df["vc1"] = ex_vc[:, 0]
        df["vc2"] = ex_vc[:, 1]
        df["vc3"] = ex_vc[:, 2]
        df["vc4"] = ex_vc[:, 3]
        vc_formula = {"a": "0 + vc1 + vc2", "b": "0 + vc3 + vc4"}
        model2 = MixedLM.from_formula(
            "y ~ x1",
            groups=groups,
            re_formula="0 + re1 + re2",
            vc_formula=vc_formula,
            data=df)
        result2 = model2.fit()

        assert_allclose(result1.fe_params, result2.fe_params, rtol=1e-8)
        assert_allclose(result1.cov_re, result2.cov_re, rtol=1e-8)
        assert_allclose(result1.vcomp, result2.vcomp, rtol=1e-8)
        assert_allclose(result1.params, result2.params, rtol=1e-8)
        assert_allclose(result1.bse, result2.bse, rtol=1e-8)
Пример #17
0
    def test_formulas(self):
        np.random.seed(2410)
        exog = np.random.normal(size=(300, 4))
        exog_re = np.random.normal(size=300)
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = exog_re * np.kron(np.random.normal(size=100), [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)

        mod1 = MixedLM(endog, exog, groups, exog_re)
        # test the names
        assert_(mod1.data.xnames == ["x1", "x2", "x3", "x4"])
        assert_(mod1.data.exog_re_names == ["x_re1"])
        assert_(mod1.data.exog_re_names_full == ["x_re1 Var"])
        rslt1 = mod1.fit()

        # Fit with a formula, passing groups as the actual values.
        df = pd.DataFrame({"endog": endog})
        for k in range(exog.shape[1]):
            df["exog%d" % k] = exog[:, k]
        df["exog_re"] = exog_re
        fml = "endog ~ 0 + exog0 + exog1 + exog2 + exog3"
        re_fml = "0 + exog_re"
        mod2 = MixedLM.from_formula(fml, df, re_formula=re_fml, groups=groups)

        assert_(mod2.data.xnames == ["exog0", "exog1", "exog2", "exog3"])
        assert_(mod2.data.exog_re_names == ["exog_re"])
        assert_(mod2.data.exog_re_names_full == ["exog_re Var"])

        rslt2 = mod2.fit()
        assert_almost_equal(rslt1.params, rslt2.params)

        # Fit with a formula, passing groups as the variable name.
        df["groups"] = groups
        mod3 = MixedLM.from_formula(fml,
                                    df,
                                    re_formula=re_fml,
                                    groups="groups")
        assert_(mod3.data.xnames == ["exog0", "exog1", "exog2", "exog3"])
        assert_(mod3.data.exog_re_names == ["exog_re"])
        assert_(mod3.data.exog_re_names_full == ["exog_re Var"])

        rslt3 = mod3.fit(start_params=rslt2.params)
        assert_allclose(rslt1.params, rslt3.params, rtol=1e-4)

        # Check default variance structure with non-formula model
        # creation, also use different exog_re that produces a zero
        # estimated variance parameter.
        exog_re = np.ones(len(endog), dtype=np.float64)
        mod4 = MixedLM(endog, exog, groups, exog_re)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            rslt4 = mod4.fit()
        from statsmodels.formula.api import mixedlm
        mod5 = mixedlm(fml, df, groups="groups")
        assert_(mod5.data.exog_re_names == ["groups"])
        assert_(mod5.data.exog_re_names_full == ["groups Var"])
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            rslt5 = mod5.fit()
        assert_almost_equal(rslt4.params, rslt5.params)
Пример #18
0
    def test_vcomp_formula(self):

        np.random.seed(6241)
        n = 800
        exog = np.random.normal(size=(n, 2))
        exog[:, 0] = 1
        ex_vc = []
        groups = np.kron(np.arange(n / 4), np.ones(4))
        errors = 0
        exog_re = np.random.normal(size=(n, 2))
        slopes = np.random.normal(size=(n // 4, 2))
        slopes = np.kron(slopes, np.ones((4, 1))) * exog_re
        errors += slopes.sum(1)
        ex_vc = np.random.normal(size=(n, 4))
        slopes = np.random.normal(size=(n // 4, 4))
        slopes[:, 2:] *= 2
        slopes = np.kron(slopes, np.ones((4, 1))) * ex_vc
        errors += slopes.sum(1)
        errors += np.random.normal(size=n)
        endog = exog.sum(1) + errors

        exog_vc = {"a": {}, "b": {}}
        for k, group in enumerate(range(int(n / 4))):
            ix = np.flatnonzero(groups == group)
            exog_vc["a"][group] = ex_vc[ix, 0:2]
            exog_vc["b"][group] = ex_vc[ix, 2:]
        model1 = MixedLM(endog, exog, groups, exog_re=exog_re, exog_vc=exog_vc)
        result1 = model1.fit()

        df = pd.DataFrame(exog[:, 1:], columns=["x1"])
        df["y"] = endog
        df["re1"] = exog_re[:, 0]
        df["re2"] = exog_re[:, 1]
        df["vc1"] = ex_vc[:, 0]
        df["vc2"] = ex_vc[:, 1]
        df["vc3"] = ex_vc[:, 2]
        df["vc4"] = ex_vc[:, 3]
        vc_formula = {"a": "0 + vc1 + vc2", "b": "0 + vc3 + vc4"}
        model2 = MixedLM.from_formula("y ~ x1",
                                      groups=groups,
                                      re_formula="0 + re1 + re2",
                                      vc_formula=vc_formula,
                                      data=df)
        result2 = model2.fit()

        assert_allclose(result1.fe_params, result2.fe_params, rtol=1e-8)
        assert_allclose(result1.cov_re, result2.cov_re, rtol=1e-8)
        assert_allclose(result1.vcomp, result2.vcomp, rtol=1e-8)
        assert_allclose(result1.params, result2.params, rtol=1e-8)
        assert_allclose(result1.bse, result2.bse, rtol=1e-8)
Пример #19
0
    def test_pastes_vcomp(self):
        """
        pastes data from lme4

        Fit in R using formula:

        strength ~ (1|batch) + (1|batch:cask)
        """

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'pastes.csv')

        # REML
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula("strength ~ 1", groups="batch",
                                     re_formula="1", vc_formula=vcf,
                                     data=data)
        result = model.fit()

        assert_allclose(result.fe_params.iloc[0], 60.0533, rtol=1e-3)
        assert_allclose(result.bse.iloc[0], 0.6769, rtol=1e-3)
        assert_allclose(result.cov_re.iloc[0, 0], 1.657, rtol=1e-3)
        assert_allclose(result.scale, 0.678, rtol=1e-3)
        assert_allclose(result.llf, -123.49, rtol=1e-1)
        assert_equal(result.aic, np.nan)  # don't provide aic/bic with REML
        assert_equal(result.bic, np.nan)

        resid = np.r_[0.17133538, -0.02866462, -
                      1.08662875, 1.11337125, -0.12093607]
        assert_allclose(result.resid[0:5], resid, rtol=1e-3)

        fit = np.r_[62.62866, 62.62866, 61.18663, 61.18663, 62.82094]
        assert_allclose(result.fittedvalues[0:5], fit, rtol=1e-4)

        # ML
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula("strength ~ 1", groups="batch",
                                     re_formula="1", vc_formula=vcf,
                                     data=data)
        result = model.fit(reml=False)
        assert_allclose(result.fe_params.iloc[0], 60.0533, rtol=1e-3)
        assert_allclose(result.bse.iloc[0], 0.642, rtol=1e-3)
        assert_allclose(result.cov_re.iloc[0, 0], 1.199, rtol=1e-3)
        assert_allclose(result.scale, 0.67799, rtol=1e-3)
        assert_allclose(result.llf, -123.997, rtol=1e-1)
        assert_allclose(result.aic, 255.9944, rtol=1e-3)
        assert_allclose(result.bic, 264.3718, rtol=1e-3)
Пример #20
0
    def test_pastes_vcomp(self):
        # pastes data from lme4
        #
        # Fit in R using formula:
        #
        # strength ~ (1|batch) + (1|batch:cask)

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'pastes.csv')

        # REML
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula("strength ~ 1", groups="batch",
                                     re_formula="1", vc_formula=vcf,
                                     data=data)
        result = model.fit()

        assert_allclose(result.fe_params.iloc[0], 60.0533, rtol=1e-3)
        assert_allclose(result.bse.iloc[0], 0.6769, rtol=1e-3)
        assert_allclose(result.cov_re.iloc[0, 0], 1.657, rtol=1e-3)
        assert_allclose(result.scale, 0.678, rtol=1e-3)
        assert_allclose(result.llf, -123.49, rtol=1e-1)
        assert_equal(result.aic, np.nan)  # don't provide aic/bic with REML
        assert_equal(result.bic, np.nan)

        resid = np.r_[0.17133538, -0.02866462, -
                      1.08662875, 1.11337125, -0.12093607]
        assert_allclose(result.resid[0:5], resid, rtol=1e-3)

        fit = np.r_[62.62866, 62.62866, 61.18663, 61.18663, 62.82094]
        assert_allclose(result.fittedvalues[0:5], fit, rtol=1e-4)

        # ML
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula("strength ~ 1", groups="batch",
                                     re_formula="1", vc_formula=vcf,
                                     data=data)
        result = model.fit(reml=False)
        assert_allclose(result.fe_params.iloc[0], 60.0533, rtol=1e-3)
        assert_allclose(result.bse.iloc[0], 0.642, rtol=1e-3)
        assert_allclose(result.cov_re.iloc[0, 0], 1.199, rtol=1e-3)
        assert_allclose(result.scale, 0.67799, rtol=1e-3)
        assert_allclose(result.llf, -123.997, rtol=1e-1)
        assert_allclose(result.aic, 255.9944, rtol=1e-3)
        assert_allclose(result.bic, 264.3718, rtol=1e-3)
Пример #21
0
    def test_vcomp_3(self):
        # Test a model with vcomp but no other random effects, using formulas.

        import scipy

        v = scipy.__version__.split(".")[1]
        v = int(v)
        if v < 16:
            return

        np.random.seed(4279)
        x1 = np.random.normal(size=400)
        groups = np.kron(np.arange(100), np.ones(4))
        slopes = np.random.normal(size=100)
        slopes = np.kron(slopes, np.ones(4)) * x1
        y = slopes + np.random.normal(size=400)
        vc_fml = {"a": "0 + x1"}
        df = pd.DataFrame({"y": y, "x1": x1, "groups": groups})

        model = MixedLM.from_formula("y ~ 1", groups="groups", vc_formula=vc_fml, data=df)
        result = model.fit()
        result.summary()

        assert_allclose(result.resid.iloc[0:4], np.r_[-1.180753, 0.279966, 0.578576, -0.667916], rtol=1e-3)
        assert_allclose(result.fittedvalues.iloc[0:4], np.r_[-0.101549, 0.028613, -0.224621, -0.126295], rtol=1e-3)
Пример #22
0
def calcBetaLme(data_full, gain_full, loss_full, linear_full, quad_full,
                run_group, thrshd):
    """ 
    function to calculate beta parameters.
    Input: data from bold file, two list of gain, loss regressor values
        dummy variable indicating the groups,
        a threshold to idenfity the voxels inside the brain
    Output: beta coefficient, the corresponding p-values, the convergence information
    """
    T = data_full.shape[-1]
    time_by_vox = np.reshape(data_full, (-1, T)).T
    beta = np.empty([time_by_vox.shape[1], 5])
    fml = "bold ~ gain + loss"
    for k in np.arange(0, time_by_vox.shape[1]):
        ## set a threshold to idenfity the voxels inside the brain
        if (np.mean(time_by_vox[:, k]) <= 400):
            beta[k, :] = [0, 0, 0, 0, 0]
        else:
            dt = pd.DataFrame({
                'gain': gain_full,
                'loss': loss_full,
                'run_group': run_group,
                'ldrift': linear_full,
                'qdrift': quad_full,
                'bold': time_by_vox[:, k]
            })
            mod_lme = MixedLM.from_formula(fml, dt, groups=dt["run_group"])
            lme_result = mod_lme.fit()
            beta[k, :] = [
                lme_result.fe_params["gain"], lme_result.pvalues["gain"],
                lme_result.fe_params["loss"], lme_result.pvalues["loss"],
                lme_result.converged
            ]
    return beta
Пример #23
0
    def test_vcomp_3(self):
        # Test a model with vcomp but no other random effects, using formulas.

        import scipy
        v = scipy.__version__.split(".")[1]
        v = int(v)
        if v < 16:
            return

        np.random.seed(4279)
        x1 = np.random.normal(size=400)
        groups = np.kron(np.arange(100), np.ones(4))
        slopes = np.random.normal(size=100)
        slopes = np.kron(slopes, np.ones(4)) * x1
        y = slopes + np.random.normal(size=400)
        vc_fml = {"a": "0 + x1"}
        df = pd.DataFrame({"y": y, "x1": x1, "groups": groups})

        model = MixedLM.from_formula("y ~ 1",
                                     groups="groups",
                                     vc_formula=vc_fml,
                                     data=df)
        result = model.fit()
        result.summary()

        assert_allclose(result.resid.iloc[0:4],
                        np.r_[-1.180753, 0.279966, 0.578576, -0.667916],
                        rtol=1e-3)
        assert_allclose(result.fittedvalues.iloc[0:4],
                        np.r_[-0.101549, 0.028613, -0.224621, -0.126295],
                        rtol=1e-3)
Пример #24
0
 def test_profile(self):
     # Smoke test
     np.random.seed(9814)
     k_fe = 4
     gsize = 3
     n_grp = 100
     exog = np.random.normal(size=(n_grp * gsize, k_fe))
     groups = np.kron(np.arange(n_grp), np.ones(gsize))
     g_errors = np.kron(np.random.normal(size=100), np.ones(gsize))
     endog = exog.sum(1) + g_errors + np.random.normal(size=n_grp * gsize)
     rslt = MixedLM(endog, exog, groups).fit(niter_em=10)
     prof = rslt.profile_re(0,
                            dist_low=0.1,
                            num_low=1,
                            dist_high=0.1,
                            num_high=1)
def lmemodel(data, metadata, 
             fixedEffects = ['Tissue of Origin'],
             randomEffects=['High Confidence Donor ID (HCDID)']):
    """Performs a mixed effect linear model"""
    df = metadata[fixedEffects].copy()
    df = pd.concat([df, metadata[randomEffects]], axis=1 )
    #Change the parameters to be compatible with patsy formulas
    fixedEffects = [c.translate(string.maketrans(' ()', '___')) for c in fixedEffects]
    randomEffects = [c.translate(string.maketrans(' ()', '___')) for c in randomEffects]
    df.columns = [c.translate(string.maketrans(' ()', '___')) for c in df.columns]

    model_string = 'gene ~ '+' + '.join(fixedEffects)
    results = []
    for i in range(data.shape[0]):
        #Add the dependent variable to the dataframe
        df['gene'] = data.irow(i)
        #################
        df['High_Confidence_Donor_ID__HCDID_'] = stats.binom.rvs(1, .4, size=69)
        print df.shape, model_string
        return df
        df = df.dropna()
        print df.shape
        #################
        #compute new model
        mod = MixedLM.from_formula(model_string, df, groups = df[randomEffects])
        return mod
        #df.boxplot(by=fixedEffects)
        #mod = sm.ols(model_fit, df)
        #results.append(mod.fit())
    return results
Пример #26
0
    def test_vcomp_2(self):
        # Simulated data comparison to R

        np.random.seed(6241)
        n = 1600
        exog = np.random.normal(size=(n, 2))
        groups = np.kron(np.arange(n / 16), np.ones(16))

        # Build up the random error vector
        errors = 0

        # The random effects
        exog_re = np.random.normal(size=(n, 2))
        slopes = np.random.normal(size=(n // 16, 2))
        slopes = np.kron(slopes, np.ones((16, 1))) * exog_re
        errors += slopes.sum(1)

        # First variance component
        subgroups1 = np.kron(np.arange(n / 4), np.ones(4))
        errors += np.kron(2 * np.random.normal(size=n // 4), np.ones(4))

        # Second variance component
        subgroups2 = np.kron(np.arange(n / 2), np.ones(2))
        errors += np.kron(2 * np.random.normal(size=n // 2), np.ones(2))

        # iid errors
        errors += np.random.normal(size=n)

        endog = exog.sum(1) + errors

        df = pd.DataFrame(index=range(n))
        df["y"] = endog
        df["groups"] = groups
        df["x1"] = exog[:, 0]
        df["x2"] = exog[:, 1]
        df["z1"] = exog_re[:, 0]
        df["z2"] = exog_re[:, 1]
        df["v1"] = subgroups1
        df["v2"] = subgroups2

        # Equivalent model in R:
        # df.to_csv("tst.csv")
        # model = lmer(y ~ x1 + x2 + (0 + z1 + z2 | groups) + (1 | v1) + (1 |
        # v2), df)

        vcf = {"a": "0 + C(v1)", "b": "0 + C(v2)"}
        model1 = MixedLM.from_formula("y ~ x1 + x2", groups=groups,
                                      re_formula="0+z1+z2",
                                      vc_formula=vcf, data=df)
        result1 = model1.fit()

        # Compare to R
        assert_allclose(result1.fe_params, [
                        0.16527, 0.99911, 0.96217], rtol=1e-4)
        assert_allclose(result1.cov_re, [
                        [1.244,  0.146], [0.146, 1.371]], rtol=1e-3)
        assert_allclose(result1.vcomp, [4.024, 3.997], rtol=1e-3)
        assert_allclose(result1.bse.iloc[0:3], [
                        0.12610, 0.03938, 0.03848], rtol=1e-3)
Пример #27
0
    def test_EM(self):

        np.random.seed(3298)
        exog = np.random.normal(size=(300, 4))
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = np.kron(np.random.normal(size=100), [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)
        mdf1 = MixedLM(endog, exog, groups).fit(niter_em=10)
Пример #28
0
    def test_regularized(self):

        np.random.seed(3453)
        exog = np.random.normal(size=(400, 5))
        groups = np.kron(np.arange(100), np.ones(4))
        expected_endog = exog[:, 0] - exog[:, 2]
        endog = expected_endog + np.kron(np.random.normal(size=100), np.ones(4)) + np.random.normal(size=400)

        # L1 regularization
        md = MixedLM(endog, exog, groups)
        mdf1 = md.fit_regularized(alpha=1.0)
        mdf1.summary()

        # L1 regularization
        md = MixedLM(endog, exog, groups)
        mdf2 = md.fit_regularized(alpha=10 * np.ones(5))
        mdf2.summary()

        # L2 regularization
        pen = penalties.L2()
        mdf3 = md.fit_regularized(method=pen, alpha=0.0)
        mdf3.summary()

        # L2 regularization
        pen = penalties.L2()
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            mdf4 = md.fit_regularized(method=pen, alpha=100.0)
        mdf4.summary()

        # Pseudo-Huber regularization
        pen = penalties.PseudoHuber(0.3)
        mdf5 = md.fit_regularized(method=pen, alpha=1.0)
        mdf5.summary()
Пример #29
0
    def test_score(self):

        n = 200
        m = 5
        p = 3
        pr = 2

        for jl in 0, 1:
            for reml in False, True:
                for cov_pen_wt in 0, 10:

                    cov_pen = penalties.PSD(cov_pen_wt)

                    np.random.seed(3558)
                    exog_fe = np.random.normal(size=(n * m, p))
                    exog_re = np.random.normal(size=(n * m, pr))
                    endog = exog_fe.sum(1) + np.random.normal(size=n * m)
                    groups = np.kron(range(n), np.ones(m))

                    md = MixedLM(endog, exog_fe, groups, exog_re)
                    md.reml = reml
                    md.cov_pen = cov_pen
                    if jl == 0:
                        like = lambda x: -md.loglike_sqrt(x)
                        score = lambda x: -md.score_sqrt(x)
                    else:
                        like = lambda x: -md.loglike(x)
                        score = lambda x: -md.score(x)

                    for kr in range(5):
                        fe_params = np.random.normal(size=p)
                        cov_re = np.random.normal(size=(pr, pr))
                        cov_re = np.dot(cov_re.T, cov_re)
                        params_prof = md._pack(fe_params, cov_re)
                        gr = score(params_prof)

                        ngr = np.zeros_like(gr)
                        for k in range(len(ngr)):

                            def f(x):
                                pp = params_prof.copy()
                                pp[k] = x
                                return like(pp)

                            ngr[k] = derivative(f, params_prof[k], dx=1e-6)

                        assert_almost_equal(gr / ngr,
                                            np.ones(len(gr)),
                                            decimal=3)
Пример #30
0
    def do1(self, reml, irf, ds_ix):

        # No need to check independent random effects when there is
        # only one of them.
        if irf and ds_ix < 6:
            return

        irfs = "irf" if irf else "drf"
        meth = "reml" if reml else "ml"

        rslt = R_Results(meth, irfs, ds_ix)

        # Fit the model
        md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups, rslt.exog_re)
        if not irf:  # Free random effects covariance
            mdf = md.fit(gtol=1e-7, reml=reml)
        else:  # Independent random effects
            k_fe = rslt.exog_fe.shape[1]
            k_re = rslt.exog_re.shape[1]
            free = MixedLMParams(k_fe, k_re, 0)
            free.fe_params = np.ones(k_fe)
            free.cov_re = np.eye(k_re)
            free.vcomp = np.array([])
            mdf = md.fit(reml=reml, gtol=1e-7, free=free)

        assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4)
        assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4)
        assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4)

        k_fe = md.k_fe
        assert_almost_equal(rslt.vcov_r,
                            mdf.cov_params()[0:k_fe, 0:k_fe],
                            decimal=3)

        assert_almost_equal(mdf.llf, rslt.loglike[0], decimal=2)

        # Not supported in R except for independent random effects
        if not irf:
            assert_almost_equal(mdf.random_effects[0],
                                rslt.ranef_postmean,
                                decimal=3)
            assert_almost_equal(mdf.random_effects_cov[0],
                                rslt.ranef_condvar,
                                decimal=3)
Пример #31
0
 def setup_class(cls):
     # Setup the model and estimate it.
     pid = np.repeat([0, 1], 5)
     x0 = np.repeat([1], 10)
     x1 = [1, 5, 7, 3, 5, 1, 2, 6, 9, 8]
     x2 = [6, 2, 1, 0, 1, 4, 3, 8, 2, 1]
     y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
     df = pd.DataFrame({"y": y, "pid": pid, "x0": x0, "x1": x1, "x2": x2})
     endog = df["y"].values
     exog = df[["x0", "x1", "x2"]].values
     groups = df["pid"].values
     cls.res = MixedLM(endog, exog, groups=groups).fit()
Пример #32
0
    def do1(self, reml, irf, ds_ix):

        # No need to check independent random effects when there is
        # only one of them.
        if irf and ds_ix < 6:
            return

        irfs = "irf" if irf else "drf"
        meth = "reml" if reml else "ml"

        rslt = R_Results(meth, irfs, ds_ix)

        # Fit the model
        md = MixedLM(rslt.endog, rslt.exog_fe, rslt.groups, rslt.exog_re)
        if not irf:  # Free random effects covariance
            mdf = md.fit(gtol=1e-7, reml=reml)
        else:  # Independent random effects
            k_fe = rslt.exog_fe.shape[1]
            k_re = rslt.exog_re.shape[1]
            mdf = md.fit(reml=reml,
                         gtol=1e-7,
                         free=(np.ones(k_fe), np.eye(k_re)))

        assert_almost_equal(mdf.fe_params, rslt.coef, decimal=4)
        assert_almost_equal(mdf.cov_re, rslt.cov_re_r, decimal=4)
        assert_almost_equal(mdf.scale, rslt.scale_r, decimal=4)

        pf = rslt.exog_fe.shape[1]
        assert_almost_equal(rslt.vcov_r,
                            mdf.cov_params()[0:pf, 0:pf],
                            decimal=3)

        assert_almost_equal(mdf.likeval, rslt.loglike[0], decimal=2)

        # Not supported in R
        if not irf:
            assert_almost_equal(mdf.ranef()[0], rslt.ranef_postmean, decimal=3)
            assert_almost_equal(mdf.ranef_cov()[0],
                                rslt.ranef_condvar,
                                decimal=3)
Пример #33
0
    def test_formulas(self):
        np.random.seed(2410)
        exog = np.random.normal(size=(300, 4))
        exog_re = np.random.normal(size=300)
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = exog_re * np.kron(np.random.normal(size=100),
                                     [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)

        mod1 = MixedLM(endog, exog, groups, exog_re)
        # test the names
        assert_(mod1.data.xnames == ["x1", "x2", "x3", "x4"])
        assert_(mod1.data.exog_re_names == ["x_re1"])
        assert_(mod1.data.exog_re_names_full == ["x_re1 RE"])
        rslt1 = mod1.fit()

        # Fit with a formula, passing groups as the actual values.
        df = pd.DataFrame({"endog": endog})
        for k in range(exog.shape[1]):
            df["exog%d" % k] = exog[:, k]
        df["exog_re"] = exog_re
        fml = "endog ~ 0 + exog0 + exog1 + exog2 + exog3"
        re_fml = "0 + exog_re"
        mod2 = MixedLM.from_formula(fml, df, re_formula=re_fml,
                                    groups=groups)

        assert_(mod2.data.xnames == ["exog0", "exog1", "exog2", "exog3"])
        assert_(mod2.data.exog_re_names == ["exog_re"])
        assert_(mod2.data.exog_re_names_full == ["exog_re RE"])

        rslt2 = mod2.fit()
        assert_almost_equal(rslt1.params, rslt2.params)

        # Fit with a formula, passing groups as the variable name.
        df["groups"] = groups
        mod3 = MixedLM.from_formula(fml, df, re_formula=re_fml,
                                    groups="groups")
        assert_(mod3.data.xnames == ["exog0", "exog1", "exog2", "exog3"])
        assert_(mod3.data.exog_re_names == ["exog_re"])
        assert_(mod3.data.exog_re_names_full == ["exog_re RE"])

        rslt3 = mod3.fit(start_params=rslt2.params)
        assert_allclose(rslt1.params, rslt3.params, rtol=1e-4)

        # Check default variance structure with non-formula model
        # creation, also use different exog_re that produces a zero
        # estimated variance parameter.
        exog_re = np.ones(len(endog), dtype=np.float64)
        mod4 = MixedLM(endog, exog, groups, exog_re)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            rslt4 = mod4.fit()
        from statsmodels.formula.api import mixedlm
        mod5 = mixedlm(fml, df, groups="groups")
        assert_(mod5.data.exog_re_names == ["groups"])
        assert_(mod5.data.exog_re_names_full == ["groups RE"])
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            rslt5 = mod5.fit()
        assert_almost_equal(rslt4.params, rslt5.params)
Пример #34
0
    def test_profile_inference(self):
        # Smoke test
        np.random.seed(9814)
        k_fe = 2
        gsize = 3
        n_grp = 100
        exog = np.random.normal(size=(n_grp * gsize, k_fe))
        exog_re = np.ones((n_grp * gsize, 1))
        groups = np.kron(np.arange(n_grp), np.ones(gsize))
        vca = np.random.normal(size=n_grp * gsize)
        vcb = np.random.normal(size=n_grp * gsize)
        errors = 0
        g_errors = np.kron(np.random.normal(size=100), np.ones(gsize))
        errors += g_errors + exog_re[:, 0]
        rc = np.random.normal(size=n_grp)
        errors += np.kron(rc, np.ones(gsize)) * vca
        rc = np.random.normal(size=n_grp)
        errors += np.kron(rc, np.ones(gsize)) * vcb
        errors += np.random.normal(size=n_grp * gsize)

        endog = exog.sum(1) + errors
        vc = {"a": {}, "b": {}}
        for k in range(n_grp):
            ii = np.flatnonzero(groups == k)
            vc["a"][k] = vca[ii][:, None]
            vc["b"][k] = vcb[ii][:, None]
        rslt = MixedLM(endog, exog, groups=groups,
                       exog_re=exog_re, exog_vc=vc).fit()
        rslt.profile_re(0, vtype='re', dist_low=1, num_low=3, dist_high=1,
                        num_high=3)
        rslt.profile_re('b', vtype='vc', dist_low=0.5, num_low=3,
                        dist_high=0.5, num_high=3)
Пример #35
0
def test_mixed_lm_wrapper():
    # a bit more complicated model to test
    np.random.seed(2410)
    exog = np.random.normal(size=(300, 4))
    exog_re = np.random.normal(size=300)
    groups = np.kron(np.arange(100), [1, 1, 1])
    g_errors = exog_re * np.kron(np.random.normal(size=100),
                                 [1, 1, 1])
    endog = exog.sum(1) + g_errors + np.random.normal(size=300)

    # Fit with a formula, passing groups as the actual values.
    df = pd.DataFrame({"endog": endog})
    for k in range(exog.shape[1]):
        df["exog%d" % k] = exog[:, k]
    df["exog_re"] = exog_re
    fml = "endog ~ 0 + exog0 + exog1 + exog2 + exog3"
    re_fml = "~ exog_re"
    mod2 = MixedLM.from_formula(fml, df, re_formula=re_fml,
                                groups=groups)
    result = mod2.fit()
    result.summary()

    xnames = ["exog0", "exog1", "exog2", "exog3"]
    re_names = ["Intercept", "exog_re"]
    re_names_full = ["Intercept RE", "Intercept RE x exog_re RE",
                     "exog_re RE"]

    assert_(mod2.data.xnames == xnames)
    assert_(mod2.data.exog_re_names == re_names)
    assert_(mod2.data.exog_re_names_full == re_names_full)

    params = result.params
    assert_(params.index.tolist() == xnames + re_names_full)
    bse = result.bse
    assert_(bse.index.tolist() == xnames + re_names_full)
    tvalues = result.tvalues
    assert_(tvalues.index.tolist() == xnames + re_names_full)
    cov_params = result.cov_params()
    assert_(cov_params.index.tolist() == xnames + re_names_full)
    assert_(cov_params.columns.tolist() == xnames + re_names_full)
    fe = result.fe_params
    assert_(fe.index.tolist() == xnames)
    bse_fe = result.bse_fe
    assert_(bse_fe.index.tolist() == xnames)
    cov_re = result.cov_re
    assert_(cov_re.index.tolist() == re_names)
    assert_(cov_re.columns.tolist() == re_names)
    cov_re_u = result.cov_re_unscaled
    assert_(cov_re_u.index.tolist() == re_names)
    assert_(cov_re_u.columns.tolist() == re_names)
    bse_re = result.bse_re
    assert_(bse_re.index.tolist() == re_names_full)
Пример #36
0
    def test_sparse(self):

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'pastes.csv')

        # Dense
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}
        model = MixedLM.from_formula("strength ~ 1", groups="batch",
                                     re_formula="1", vc_formula=vcf,
                                     data=data)
        result = model.fit()

        # Sparse
        model2 = MixedLM.from_formula("strength ~ 1", groups="batch",
                                      re_formula="1", vc_formula=vcf,
                                      use_sparse=True, data=data)
        result2 = model2.fit()

        assert_allclose(result.params, result2.params)
        assert_allclose(result.bse, result2.bse)
Пример #37
0
def test_random_effects():

    np.random.seed(23429)

    # Default model (random effects only)
    ngrp = 100
    gsize = 10
    rsd = 2
    gsd = 3
    mn = gsd * np.random.normal(size=ngrp)
    gmn = np.kron(mn, np.ones(gsize))
    y = gmn + rsd * np.random.normal(size=ngrp * gsize)
    gr = np.kron(np.arange(ngrp), np.ones(gsize))
    x = np.ones(ngrp * gsize)
    model = MixedLM(y, x, groups=gr)
    result = model.fit()
    re = result.random_effects
    assert_(isinstance(re, dict))
    assert_(len(re) == ngrp)
    assert_(isinstance(re[0], pd.Series))
    assert_(len(re[0]) == 1)

    # Random intercept only, set explicitly
    model = MixedLM(y, x, exog_re=x, groups=gr)
    result = model.fit()
    re = result.random_effects
    assert_(isinstance(re, dict))
    assert_(len(re) == ngrp)
    assert_(isinstance(re[0], pd.Series))
    assert_(len(re[0]) == 1)

    # Random intercept and slope
    xr = np.random.normal(size=(ngrp * gsize, 2))
    xr[:, 0] = 1
    qp = np.linspace(-1, 1, gsize)
    xr[:, 1] = np.kron(np.ones(ngrp), qp)
    model = MixedLM(y, x, exog_re=xr, groups=gr)
    result = model.fit()
    re = result.random_effects
    assert_(isinstance(re, dict))
    assert_(len(re) == ngrp)
    assert_(isinstance(re[0], pd.Series))
    assert_(len(re[0]) == 2)
Пример #38
0
def mass_uv_mixedlmm(formula, data, uv_data, group_id, re_formula=None):
    mods = []
    for d_idx in range(uv_data.shape[1]):
        print("{} of {}".format(d_idx, uv_data.shape[1]), end="\r")
        data_temp = data.copy()
        data_temp["Brain"] = uv_data[:, d_idx]
        model = MixedLM.from_formula(formula, data_temp, groups=group_id)
        try:
            mod_fit = model.fit()
        except:
            mods.append(None)
            continue
        mods.append(mod_fit)
    return mods
Пример #39
0
    def test_score(self):

        n = 200
        m = 5
        p = 3
        pr = 2

        for jl in 0,1:
            for reml in False,True:
                for cov_pen_wt in 0,10:

                    cov_pen = penalties.PSD(cov_pen_wt)

                    np.random.seed(3558)
                    exog_fe = np.random.normal(size=(n*m, p))
                    exog_re = np.random.normal(size=(n*m, pr))
                    endog = exog_fe.sum(1) + np.random.normal(size=n*m)
                    groups = np.kron(range(n), np.ones(m))

                    md = MixedLM(endog, exog_fe, groups, exog_re)
                    md.reml = reml
                    md.cov_pen = cov_pen
                    if jl == 0:
                        like = lambda x: -md.loglike_sqrt(x)
                        score = lambda x: -md.score_sqrt(x)
                    else:
                        like = lambda x: -md.loglike(x)
                        score = lambda x: -md.score(x)

                    for kr in range(5):
                        fe_params = np.random.normal(size=p)
                        cov_re = np.random.normal(size=(pr,pr))
                        cov_re = np.dot(cov_re.T, cov_re)
                        params_prof = md._pack(fe_params, cov_re)
                        gr = score(params_prof)

                        ngr = np.zeros_like(gr)
                        for k in range(len(ngr)):
                            def f(x):
                                pp = params_prof.copy()
                                pp[k] = x
                                return like(pp)
                            ngr[k] = derivative(f, params_prof[k],
                                                dx=1e-6)

                        assert_almost_equal(gr / ngr, np.ones(len(gr)),
                                            decimal=3)
Пример #40
0
def mass_uv_mixedlmm(formula, data, uv_data, group_id, re_formula=None):
    mods = [[] for source_idx in range(uv_data.shape[1])]
    for source_idx in range(uv_data.shape[1]):
        for dest_idx in range(uv_data.shape[2]):
            if all(uv_data[:, source_idx, dest_idx] == 0):
                mods[source_idx].append(None)
                continue
            #print("Source {}, Destination {}".format(source_idx, dest_idx), end="\r")
            print("Source {}, Destination {}".format(source_idx, dest_idx))
            data_temp = data.copy()
            data_temp["Brain"] = uv_data[:, source_idx, dest_idx]
            model = MixedLM.from_formula(formula, data_temp, groups=group_id)
            mod_fit = model.fit()
            mods[source_idx].append(mod_fit)
    return mods
Пример #41
0
def mass_uv_mixedlmm(formula, data, uv_data, group_id, re_formula=None, exclude=[]):
    tvals = []
    coeffs = []
    for d_idx in range(uv_data.shape[1]):
        if d_idx in exclude:
            tvals.append(0)
            coeffs.append(0)
            continue
        data_temp = data.copy()
        data_temp["Brain"] = uv_data[:,d_idx]
        model = MixedLM.from_formula(formula, data_temp, groups=group_id)
        mod_fit = model.fit()
        tvals.append(mod_fit.tvalues.get(indep_var))
        coeffs.append(mod_fit.params.get(indep_var))
    tvals, coeffs = np.array(tvals), np.array(coeffs)
    return tvals, coeffs
Пример #42
0
def test_singular():
    # Issue #7051

    np.random.seed(3423)
    n = 100

    data = np.random.randn(n, 2)
    df = pd.DataFrame(data, columns=['Y', 'X'])
    df['class'] = pd.Series([i % 3 for i in df.index], index=df.index)

    with pytest.warns(Warning) as wrn:
        md = MixedLM.from_formula("Y ~ X", df, groups=df['class'])
        mdf = md.fit()
        mdf.summary()
        if not wrn:
            pytest.fail("warning expected")
Пример #43
0
def fit_func(rdf):
    md = MixedLM.from_formula("supply_hours ~ 1 + delta_weeks",
                              groups='block_dow',
                              re_formula='1 + delta_weeks',
                              data=rdf.fillna({'supply_hours': 0.}))

    mdf = md.fit()
    index = mdf.random_effects.keys()

    data = {
        'supply_hours': (mdf.params['Intercept'] +
                         [mdf.random_effects[i]['Intercept'] for i in index]),
        'block_dow':
        index
    }

    result = pd.DataFrame(data).set_index('block_dow')
    return result
Пример #44
0
    def test_regularized(self):

        np.random.seed(3453)
        exog = np.random.normal(size=(400, 5))
        groups = np.kron(np.arange(100), np.ones(4))
        expected_endog = exog[:, 0] - exog[:, 2]
        endog = expected_endog +\
            np.kron(np.random.normal(size=100), np.ones(4)) +\
            np.random.normal(size=400)

        # L1 regularization
        md = MixedLM(endog, exog, groups)
        mdf1 = md.fit_regularized(alpha=1.)
        mdf1.summary()

        # L1 regularization
        md = MixedLM(endog, exog, groups)
        mdf2 = md.fit_regularized(alpha=10 * np.ones(5))
        mdf2.summary()

        # L2 regularization
        pen = penalties.L2()
        mdf3 = md.fit_regularized(method=pen, alpha=0.)
        mdf3.summary()

        # L2 regularization
        pen = penalties.L2()
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            mdf4 = md.fit_regularized(method=pen, alpha=100.)
        mdf4.summary()

        # Pseudo-Huber regularization
        pen = penalties.PseudoHuber(0.3)
        mdf5 = md.fit_regularized(method=pen, alpha=1.)
        mdf5.summary()
Пример #45
0
    def test_formulas(self):

        np.random.seed(2410)
        exog = np.random.normal(size=(300, 4))
        exog_re = np.random.normal(size=300)
        groups = np.kron(np.arange(100), [1, 1, 1])
        g_errors = exog_re * np.kron(np.random.normal(size=100), [1, 1, 1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)

        mod1 = MixedLM(endog, exog, groups, exog_re)
        rslt1 = mod1.fit()

        # Fit with a formula, passing groups as the actual values.
        df = pd.DataFrame({"endog": endog})
        for k in range(exog.shape[1]):
            df["exog%d" % k] = exog[:, k]
        df["exog_re"] = exog_re
        fml = "endog ~ 0 + exog0 + exog1 + exog2 + exog3"
        re_fml = "0 + exog_re"
        mod2 = MixedLM.from_formula(fml, df, re_formula=re_fml, groups=groups)
        rslt2 = mod2.fit()
        assert_almost_equal(rslt1.params, rslt2.params)

        # Fit with a formula, passing groups as the variable name.
        df["groups"] = groups
        mod3 = MixedLM.from_formula(fml,
                                    df,
                                    re_formula=re_fml,
                                    groups="groups")
        rslt3 = mod3.fit(start_params=rslt2.params)
        assert_almost_equal(rslt1.params, rslt3.params, decimal=5)

        # Check default variance structure with formula.api
        exog_re = np.ones(len(endog), dtype=np.float64)
        mod4 = MixedLM(endog, exog, groups, exog_re)
        rslt4 = mod4.fit(start_params=rslt2.params)
        from statsmodels.formula.api import mixedlm
        mod5 = mixedlm(fml, df, groups="groups")
        rslt5 = mod5.fit(start_params=rslt2.params)
        assert_almost_equal(rslt4.params, rslt5.params)
Пример #46
0
    def test_vcomp_1(self):
        """
        Fit the same model using constrained random effects and
        variance components.
        """

        import scipy
        v = scipy.__version__.split(".")[1]
        v = int(v)
        if v < 16:
            return

        np.random.seed(4279)
        exog = np.random.normal(size=(400, 1))
        exog_re = np.random.normal(size=(400, 2))
        groups = np.kron(np.arange(100), np.ones(4))
        slopes = np.random.normal(size=(100, 2))
        slopes[:, 1] *= 2
        slopes = np.kron(slopes, np.ones((4, 1))) * exog_re
        errors = slopes.sum(1) + np.random.normal(size=400)
        endog = exog.sum(1) + errors

        free = MixedLMParams(1, 2, 0)
        free.fe_params = np.ones(1)
        free.cov_re = np.eye(2)
        free.vcomp = np.zeros(0)

        model1 = MixedLM(endog, exog, groups, exog_re=exog_re)
        result1 = model1.fit(free=free)

        exog_vc = {"a": {}, "b": {}}
        for k, group in enumerate(model1.group_labels):
            ix = model1.row_indices[group]
            exog_vc["a"][group] = exog_re[ix, 0:1]
            exog_vc["b"][group] = exog_re[ix, 1:2]
        model2 = MixedLM(endog, exog, groups, exog_vc=exog_vc)
        result2 = model2.fit()
        result2.summary()

        assert_allclose(result1.fe_params, result2.fe_params, atol=1e-4)
        assert_allclose(np.diag(result1.cov_re),
                        result2.vcomp,
                        atol=1e-2,
                        rtol=1e-4)
        assert_allclose(result1.bse[[0, 1, 3]],
                        result2.bse,
                        atol=1e-2,
                        rtol=1e-2)
def lmemodel(data,
             metadata,
             fixedEffects=['Tissue of Origin'],
             randomEffects=['High Confidence Donor ID (HCDID)']):
    """Performs a mixed effect linear model"""
    df = metadata[fixedEffects].copy()
    df = pd.concat([df, metadata[randomEffects]], axis=1)
    #Change the parameters to be compatible with patsy formulas
    fixedEffects = [
        c.translate(string.maketrans(' ()', '___')) for c in fixedEffects
    ]
    randomEffects = [
        c.translate(string.maketrans(' ()', '___')) for c in randomEffects
    ]
    df.columns = [
        c.translate(string.maketrans(' ()', '___')) for c in df.columns
    ]

    model_string = 'gene ~ ' + ' + '.join(fixedEffects)
    results = []
    for i in range(data.shape[0]):
        #Add the dependent variable to the dataframe
        df['gene'] = data.irow(i)
        #################
        df['High_Confidence_Donor_ID__HCDID_'] = stats.binom.rvs(1,
                                                                 .4,
                                                                 size=69)
        print df.shape, model_string
        return df
        df = df.dropna()
        print df.shape
        #################
        #compute new model
        mod = MixedLM.from_formula(model_string, df, groups=df[randomEffects])
        return mod
        #df.boxplot(by=fixedEffects)
        #mod = sm.ols(model_fit, df)
        #results.append(mod.fit())
    return results
Пример #48
0
def test_random_effects():

    np.random.seed(23429)

    # Default model (random effects only)
    ngrp = 100
    gsize = 10
    rsd = 2
    gsd = 3
    mn = gsd * np.random.normal(size=ngrp)
    gmn = np.kron(mn, np.ones(gsize))
    y = gmn + rsd * np.random.normal(size=ngrp * gsize)
    gr = np.kron(np.arange(ngrp), np.ones(gsize))
    x = np.ones(ngrp * gsize)
    model = MixedLM(y, x, groups=gr)
    result = model.fit()
    re = result.random_effects
    assert_(isinstance(re, dict))
    assert_(len(re) == ngrp)
    assert_(isinstance(re[0], pd.Series))
    assert_(len(re[0]) == 1)

    # Random intercept only, set explicitly
    model = MixedLM(y, x, exog_re=x, groups=gr)
    result = model.fit()
    re = result.random_effects
    assert_(isinstance(re, dict))
    assert_(len(re) == ngrp)
    assert_(isinstance(re[0], pd.Series))
    assert_(len(re[0]) == 1)

    # Random intercept and slope
    xr = np.random.normal(size=(ngrp * gsize, 2))
    xr[:, 0] = 1
    qp = np.linspace(-1, 1, gsize)
    xr[:, 1] = np.kron(np.ones(ngrp), qp)
    model = MixedLM(y, x, exog_re=xr, groups=gr)
    result = model.fit()
    re = result.random_effects
    assert_(isinstance(re, dict))
    assert_(len(re) == ngrp)
    assert_(isinstance(re[0], pd.Series))
    assert_(len(re[0]) == 2)
Пример #49
0
    def test_vcomp_1(self):
        # Fit the same model using constrained random effects and
        # variance components.

        np.random.seed(4279)
        exog = np.random.normal(size=(400, 1))
        exog_re = np.random.normal(size=(400, 2))
        groups = np.kron(np.arange(100), np.ones(4))
        slopes = np.random.normal(size=(100, 2))
        slopes[:, 1] *= 2
        slopes = np.kron(slopes, np.ones((4, 1))) * exog_re
        errors = slopes.sum(1) + np.random.normal(size=400)
        endog = exog.sum(1) + errors

        free = MixedLMParams(1, 2, 0)
        free.fe_params = np.ones(1)
        free.cov_re = np.eye(2)
        free.vcomp = np.zeros(0)

        model1 = MixedLM(endog, exog, groups, exog_re=exog_re)
        result1 = model1.fit(free=free)

        exog_vc = {"a": {}, "b": {}}
        for k, group in enumerate(model1.group_labels):
            ix = model1.row_indices[group]
            exog_vc["a"][group] = exog_re[ix, 0:1]
            exog_vc["b"][group] = exog_re[ix, 1:2]
        with pytest.warns(UserWarning, match="Using deprecated variance"):
            model2 = MixedLM(endog, exog, groups, exog_vc=exog_vc)
        result2 = model2.fit()
        result2.summary()

        assert_allclose(result1.fe_params, result2.fe_params, atol=1e-4)
        assert_allclose(np.diag(result1.cov_re),
                        result2.vcomp,
                        atol=1e-2,
                        rtol=1e-4)
        assert_allclose(result1.bse[[0, 1, 3]],
                        result2.bse,
                        atol=1e-2,
                        rtol=1e-2)
Пример #50
0
    def test_formulas(self):

        np.random.seed(2410)
        exog = np.random.normal(size=(300,4))
        exog_re = np.random.normal(size=300)
        groups = np.kron(np.arange(100), [1,1,1])
        g_errors = exog_re * np.kron(np.random.normal(size=100),
                                     [1,1,1])
        endog = exog.sum(1) + g_errors + np.random.normal(size=300)

        mod1 = MixedLM(endog, exog, groups, exog_re)
        rslt1 = mod1.fit()

        # Fit with a formula, passing groups as the actual values.
        df = pd.DataFrame({"endog": endog})
        for k in range(exog.shape[1]):
            df["exog%d" % k] = exog[:,k]
        df["exog_re"] = exog_re
        fml = "endog ~ 0 + exog0 + exog1 + exog2 + exog3"
        re_fml = "0 + exog_re"
        mod2 = MixedLM.from_formula(fml, df, re_formula=re_fml,
                                    groups=groups)
        rslt2 = mod2.fit()
        assert_almost_equal(rslt1.params, rslt2.params)

        # Fit with a formula, passing groups as the variable name.
        df["groups"] = groups
        mod3 = MixedLM.from_formula(fml, df, re_formula=re_fml,
                                    groups="groups")
        rslt3 = mod3.fit(start_params=rslt2.params)
        assert_allclose(rslt1.params, rslt3.params, rtol=1e-4)

        # Check default variance structure with non-formula model
        # creation.
        exog_re = np.ones(len(endog), dtype=np.float64)
        mod4 = MixedLM(endog, exog, groups, exog_re)
        rslt4 = mod4.fit(start_params=rslt2.params)
        from statsmodels.formula.api import mixedlm
        mod5 = mixedlm(fml, df, groups="groups")
        rslt5 = mod5.fit(start_params=rslt2.params)
        assert_almost_equal(rslt4.params, rslt5.params)
Пример #51
0
    def train(self):
        vent_train_data, adas_train_data = self.get_dataset()

        #---- Ventricle model
        rid, X, y = vent_train_data
        intercepts = np.ones((X.shape[0], 1))
        intercepts_df = pd.DataFrame({'INT': intercepts.reshape(-1)})
        squared_term = pd.DataFrame(
            {'YBL_SQ': X['YEARS_FROM_BL'].apply(np.square).values.reshape(-1)})
        X_int = X.reset_index(drop=True).join(intercepts_df).join(squared_term)
        # X_int[self.fe_features + self.re_features] = self.scaler.fit_transform(
        #     X_int[self.fe_features + self.re_features])
        model = MixedLM(endog=y.values,
                        exog=X_int[['INT'] + self.fe_features + ['YBL_SQ']],
                        groups=rid,
                        exog_re=X_int[['INT'] + self.re_features])

        results_vent = model.fit()

        #----- Adas model
        rid, X, y = adas_train_data
        intercepts = np.ones((X.shape[0], 1))
        intercepts_df = pd.DataFrame({'INT': intercepts.reshape(-1)})
        squared_term = pd.DataFrame(
            {'YBL_SQ': X['YEARS_FROM_BL'].apply(np.square).values.reshape(-1)})

        X_int = X.reset_index(drop=True).join(intercepts_df).join(squared_term)
        # X_int[self.fe_features + self.re_features] = self.scaler.fit_transform(
        #     X_int[self.fe_features + self.re_features])

        model = MixedLM(endog=y.values,
                        exog=X_int[['INT'] + self.fe_features + ['YBL_SQ']],
                        groups=rid,
                        exog_re=X_int[['INT'] + self.re_features])

        results_adas = model.fit()

        return results_vent, results_adas
Пример #52
0
    def test_compare_numdiff(self, use_sqrt, reml, profile_fe):

        n_grp = 200
        grpsize = 5
        k_fe = 3
        k_re = 2

        np.random.seed(3558)
        exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe))
        exog_re = np.random.normal(size=(n_grp * grpsize, k_re))
        exog_re[:, 0] = 1
        exog_vc = np.random.normal(size=(n_grp * grpsize, 3))
        slopes = np.random.normal(size=(n_grp, k_re))
        slopes[:, -1] *= 2
        slopes = np.kron(slopes, np.ones((grpsize, 1)))
        slopes_vc = np.random.normal(size=(n_grp, 3))
        slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1)))
        slopes_vc[:, -1] *= 2
        re_values = (slopes * exog_re).sum(1)
        vc_values = (slopes_vc * exog_vc).sum(1)
        err = np.random.normal(size=n_grp * grpsize)
        endog = exog_fe.sum(1) + re_values + vc_values + err
        groups = np.kron(range(n_grp), np.ones(grpsize))

        vc = {"a": {}, "b": {}}
        for i in range(n_grp):
            ix = np.flatnonzero(groups == i)
            vc["a"][i] = exog_vc[ix, 0:2]
            vc["b"][i] = exog_vc[ix, 2:3]

        model = MixedLM(endog,
                        exog_fe,
                        groups,
                        exog_re,
                        exog_vc=vc,
                        use_sqrt=use_sqrt)
        rslt = model.fit(reml=reml)

        loglike = loglike_function(model,
                                   profile_fe=profile_fe,
                                   has_fe=not profile_fe)

        try:
            # Test the score at several points.
            for kr in range(5):
                fe_params = np.random.normal(size=k_fe)
                cov_re = np.random.normal(size=(k_re, k_re))
                cov_re = np.dot(cov_re.T, cov_re)
                vcomp = np.random.normal(size=2)**2
                params = MixedLMParams.from_components(fe_params,
                                                       cov_re=cov_re,
                                                       vcomp=vcomp)
                params_vec = params.get_packed(has_fe=not profile_fe,
                                               use_sqrt=use_sqrt)

                # Check scores
                gr = -model.score(params, profile_fe=profile_fe)
                ngr = nd.approx_fprime(params_vec, loglike)
                assert_allclose(gr, ngr, rtol=1e-3)

            # Check Hessian matrices at the MLE (we do not have
            # the profile Hessian matrix and we do not care
            # about the Hessian for the square root
            # transformed parameter).
            if (profile_fe is False) and (use_sqrt is False):
                hess = -model.hessian(rslt.params_object)
                params_vec = rslt.params_object.get_packed(use_sqrt=False,
                                                           has_fe=True)
                loglike_h = loglike_function(model,
                                             profile_fe=False,
                                             has_fe=True)
                nhess = nd.approx_hess(params_vec, loglike_h)
                assert_allclose(hess, nhess, rtol=1e-3)
        except AssertionError:
            # See GH#5628; because this test fails unpredictably but only on
            #  OSX, we only xfail it there.
            if PLATFORM_OSX:
                pytest.xfail("fails on OSX due to unresolved "
                             "numerical differences")
            else:
                raise
Пример #53
0
    def test_compare_numdiff(self):

        n_grp = 200
        grpsize = 5
        k_fe = 3
        k_re = 2

        for use_sqrt in False, True:
            for reml in False, True:
                for profile_fe in False, True:

                    np.random.seed(3558)
                    exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe))
                    exog_re = np.random.normal(size=(n_grp * grpsize, k_re))
                    exog_re[:, 0] = 1
                    exog_vc = np.random.normal(size=(n_grp * grpsize, 3))
                    slopes = np.random.normal(size=(n_grp, k_re))
                    slopes[:, -1] *= 2
                    slopes = np.kron(slopes, np.ones((grpsize, 1)))
                    slopes_vc = np.random.normal(size=(n_grp, 3))
                    slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1)))
                    slopes_vc[:, -1] *= 2
                    re_values = (slopes * exog_re).sum(1)
                    vc_values = (slopes_vc * exog_vc).sum(1)
                    err = np.random.normal(size=n_grp * grpsize)
                    endog = exog_fe.sum(1) + re_values + vc_values + err
                    groups = np.kron(range(n_grp), np.ones(grpsize))

                    vc = {"a": {}, "b": {}}
                    for i in range(n_grp):
                        ix = np.flatnonzero(groups == i)
                        vc["a"][i] = exog_vc[ix, 0:2]
                        vc["b"][i] = exog_vc[ix, 2:3]

                    model = MixedLM(endog,
                                    exog_fe,
                                    groups,
                                    exog_re,
                                    exog_vc=vc,
                                    use_sqrt=use_sqrt)
                    rslt = model.fit(reml=reml)

                    loglike = loglike_function(model,
                                               profile_fe=profile_fe,
                                               has_fe=not profile_fe)

                    # Test the score at several points.
                    for kr in range(5):
                        fe_params = np.random.normal(size=k_fe)
                        cov_re = np.random.normal(size=(k_re, k_re))
                        cov_re = np.dot(cov_re.T, cov_re)
                        vcomp = np.random.normal(size=2)**2
                        params = MixedLMParams.from_components(fe_params,
                                                               cov_re=cov_re,
                                                               vcomp=vcomp)
                        params_vec = params.get_packed(has_fe=not profile_fe,
                                                       use_sqrt=use_sqrt)

                        # Check scores
                        gr = -model.score(params, profile_fe=profile_fe)
                        ngr = nd.approx_fprime(params_vec, loglike)
                        assert_allclose(gr, ngr, rtol=1e-3)

                    # Check Hessian matrices at the MLE (we don't have
                    # the profile Hessian matrix and we don't care
                    # about the Hessian for the square root
                    # transformed parameter).
                    if (profile_fe is False) and (use_sqrt is False):
                        hess = -model.hessian(rslt.params_object)
                        params_vec = rslt.params_object.get_packed(
                            use_sqrt=False, has_fe=True)
                        loglike_h = loglike_function(model,
                                                     profile_fe=False,
                                                     has_fe=True)
                        nhess = nd.approx_hess(params_vec, loglike_h)
                        assert_allclose(hess, nhess, rtol=1e-3)
Пример #54
0
def test_get_distribution():

    np.random.seed(234)

    n = 100
    n_groups = 10
    fe_params = np.r_[1, -2]
    cov_re = np.asarray([[1, 0.5], [0.5, 2]])
    vcomp = np.r_[0.5**2, 1.5**2]
    scale = 1.5

    exog_fe = np.random.normal(size=(n, 2))
    exog_re = np.random.normal(size=(n, 2))
    exog_vca = np.random.normal(size=(n, 2))
    exog_vcb = np.random.normal(size=(n, 2))

    groups = np.repeat(np.arange(n_groups, dtype=np.int),
                       n / n_groups)

    ey = np.dot(exog_fe, fe_params)

    u = np.random.normal(size=(n_groups, 2))
    u = np.dot(u, np.linalg.cholesky(cov_re).T)

    u1 = np.sqrt(vcomp[0]) * np.random.normal(size=(n_groups, 2))
    u2 = np.sqrt(vcomp[1]) * np.random.normal(size=(n_groups, 2))

    y = ey + (u[groups, :] * exog_re).sum(1)
    y += (u1[groups, :] * exog_vca).sum(1)
    y += (u2[groups, :] * exog_vcb).sum(1)
    y += np.sqrt(scale) * np.random.normal(size=n)

    df = pd.DataFrame({"y": y, "x1": exog_fe[:, 0], "x2": exog_fe[:, 1],
                       "z0": exog_re[:, 0], "z1": exog_re[:, 1],
                       "grp": groups})
    df["z2"] = exog_vca[:, 0]
    df["z3"] = exog_vca[:, 1]
    df["z4"] = exog_vcb[:, 0]
    df["z5"] = exog_vcb[:, 1]

    vcf = {"a": "0 + z2 + z3", "b": "0 + z4 + z5"}
    m = MixedLM.from_formula("y ~ 0 + x1 + x2", groups="grp",
                             re_formula="0 + z0 + z1",
                             vc_formula=vcf, data=df)

    # Build a params vector that is comparable to
    # MixedLMResults.params
    import statsmodels
    mp = statsmodels.regression.mixed_linear_model.MixedLMParams
    po = mp.from_components(fe_params=fe_params, cov_re=cov_re,
                            vcomp=vcomp)
    pa = po.get_packed(has_fe=True, use_sqrt=False)
    pa[len(fe_params):] /= scale

    # Get a realization
    dist = m.get_distribution(pa, scale, None)
    yr = dist.rvs(0)

    # Check the overall variance
    v = (np.dot(exog_re, cov_re) * exog_re).sum(1).mean()
    v += vcomp[0] * (exog_vca**2).sum(1).mean()
    v += vcomp[1] * (exog_vcb**2).sum(1).mean()
    v += scale
    assert_allclose(np.var(yr - ey), v, rtol=1e-2, atol=1e-4)
Пример #55
0
    def test_pastes_vcomp(self):
        # pastes data from lme4
        #
        # Fit in R using:
        #
        # r = lmer(strength ~ (1|batch) + (1|batch:cask), data=data)
        # r = lmer(strength ~ (1|batch) + (1|batch:cask), data=data,
        #          reml=FALSE)

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        rdir = os.path.join(cur_dir, 'results')
        fname = os.path.join(rdir, 'pastes.csv')
        data = pd.read_csv(fname)
        vcf = {"cask": "0 + cask"}

        # REML
        model = MixedLM.from_formula(
            "strength ~ 1",
            groups="batch",
            re_formula="1",
            vc_formula=vcf,
            data=data)
        result = model.fit()

        # fixef(r)
        assert_allclose(result.fe_params.iloc[0], 60.0533, rtol=1e-3)

        # sqrt(diag(vcov(r)))
        assert_allclose(result.bse.iloc[0], 0.6769, rtol=1e-3)

        # VarCorr(r)$batch[[1]]
        assert_allclose(result.cov_re.iloc[0, 0], 1.657, rtol=1e-3)

        # attr(VarCorr(r), "sc")^2
        assert_allclose(result.scale, 0.678, rtol=1e-3)

        # logLik(r)
        assert_allclose(result.llf, -123.49, rtol=1e-1)

        # don't provide aic/bic with REML
        assert_equal(result.aic, np.nan)
        assert_equal(result.bic, np.nan)

        # resid(r)[1:5]
        resid = np.r_[0.17133538, -0.02866462, -1.08662875, 1.11337125,
                      -0.12093607]
        assert_allclose(result.resid[0:5], resid, rtol=1e-3)

        # predict(r)[1:5]
        fit = np.r_[62.62866, 62.62866, 61.18663, 61.18663, 62.82094]
        assert_allclose(result.fittedvalues[0:5], fit, rtol=1e-4)

        # ML
        model = MixedLM.from_formula(
            "strength ~ 1",
            groups="batch",
            re_formula="1",
            vc_formula=vcf,
            data=data)
        result = model.fit(reml=False)

        # fixef(r)
        assert_allclose(result.fe_params.iloc[0], 60.0533, rtol=1e-3)

        # sqrt(diag(vcov(r)))
        assert_allclose(result.bse.iloc[0], 0.642, rtol=1e-3)

        # VarCorr(r)$batch[[1]]
        assert_allclose(result.cov_re.iloc[0, 0], 1.199, rtol=1e-3)

        # attr(VarCorr(r), "sc")^2
        assert_allclose(result.scale, 0.67799, rtol=1e-3)

        # logLik(r)
        assert_allclose(result.llf, -123.997, rtol=1e-1)

        # AIC(r)
        assert_allclose(result.aic, 255.9944, rtol=1e-3)

        # BIC(r)
        assert_allclose(result.bic, 264.3718, rtol=1e-3)
Пример #56
0
    def test_compare_numdiff(self, use_sqrt, reml, profile_fe):

        n_grp = 200
        grpsize = 5
        k_fe = 3
        k_re = 2

        np.random.seed(3558)
        exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe))
        exog_re = np.random.normal(size=(n_grp * grpsize, k_re))
        exog_re[:, 0] = 1
        exog_vc = np.random.normal(size=(n_grp * grpsize, 3))
        slopes = np.random.normal(size=(n_grp, k_re))
        slopes[:, -1] *= 2
        slopes = np.kron(slopes, np.ones((grpsize, 1)))
        slopes_vc = np.random.normal(size=(n_grp, 3))
        slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1)))
        slopes_vc[:, -1] *= 2
        re_values = (slopes * exog_re).sum(1)
        vc_values = (slopes_vc * exog_vc).sum(1)
        err = np.random.normal(size=n_grp * grpsize)
        endog = exog_fe.sum(1) + re_values + vc_values + err
        groups = np.kron(range(n_grp), np.ones(grpsize))

        vc = {"a": {}, "b": {}}
        for i in range(n_grp):
            ix = np.flatnonzero(groups == i)
            vc["a"][i] = exog_vc[ix, 0:2]
            vc["b"][i] = exog_vc[ix, 2:3]

        model = MixedLM(
            endog,
            exog_fe,
            groups,
            exog_re,
            exog_vc=vc,
            use_sqrt=use_sqrt)
        rslt = model.fit(reml=reml)

        loglike = loglike_function(
            model, profile_fe=profile_fe, has_fe=not profile_fe)

        try:
            # Test the score at several points.
            for kr in range(5):
                fe_params = np.random.normal(size=k_fe)
                cov_re = np.random.normal(size=(k_re, k_re))
                cov_re = np.dot(cov_re.T, cov_re)
                vcomp = np.random.normal(size=2)**2
                params = MixedLMParams.from_components(
                    fe_params, cov_re=cov_re, vcomp=vcomp)
                params_vec = params.get_packed(
                    has_fe=not profile_fe, use_sqrt=use_sqrt)

                # Check scores
                gr = -model.score(params, profile_fe=profile_fe)
                ngr = nd.approx_fprime(params_vec, loglike)
                assert_allclose(gr, ngr, rtol=1e-3)

            # Check Hessian matrices at the MLE (we don't have
            # the profile Hessian matrix and we don't care
            # about the Hessian for the square root
            # transformed parameter).
            if (profile_fe is False) and (use_sqrt is False):
                hess = -model.hessian(rslt.params_object)
                params_vec = rslt.params_object.get_packed(
                    use_sqrt=False, has_fe=True)
                loglike_h = loglike_function(
                    model, profile_fe=False, has_fe=True)
                nhess = nd.approx_hess(params_vec, loglike_h)
                assert_allclose(hess, nhess, rtol=1e-3)
        except AssertionError:
            # See GH#5628; because this test fails unpredictably but only on
            #  OSX, we only xfail it there.
            if PLATFORM_OSX:
                pytest.xfail("fails on OSX due to unresolved "
                             "numerical differences")
            else:
                raise
Пример #57
0
    def test_compare_numdiff(self):

        n_grp = 200
        grpsize = 5
        k_fe = 3
        k_re = 2

        for use_sqrt in False, True:
            for reml in False, True:
                for profile_fe in False, True:

                    np.random.seed(3558)
                    exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe))
                    exog_re = np.random.normal(size=(n_grp * grpsize, k_re))
                    exog_re[:, 0] = 1
                    exog_vc = np.random.normal(size=(n_grp * grpsize, 3))
                    slopes = np.random.normal(size=(n_grp, k_re))
                    slopes[:, -1] *= 2
                    slopes = np.kron(slopes, np.ones((grpsize, 1)))
                    slopes_vc = np.random.normal(size=(n_grp, 3))
                    slopes_vc = np.kron(slopes_vc, np.ones((grpsize, 1)))
                    slopes_vc[:, -1] *= 2
                    re_values = (slopes * exog_re).sum(1)
                    vc_values = (slopes_vc * exog_vc).sum(1)
                    err = np.random.normal(size=n_grp * grpsize)
                    endog = exog_fe.sum(1) + re_values + vc_values + err
                    groups = np.kron(range(n_grp), np.ones(grpsize))

                    vc = {"a": {}, "b": {}}
                    for i in range(n_grp):
                        ix = np.flatnonzero(groups == i)
                        vc["a"][i] = exog_vc[ix, 0:2]
                        vc["b"][i] = exog_vc[ix, 2:3]

                    model = MixedLM(endog, exog_fe, groups, exog_re, exog_vc=vc, use_sqrt=use_sqrt)
                    rslt = model.fit(reml=reml)

                    loglike = loglike_function(model, profile_fe=profile_fe, has_fe=not profile_fe)

                    # Test the score at several points.
                    for kr in range(5):
                        fe_params = np.random.normal(size=k_fe)
                        cov_re = np.random.normal(size=(k_re, k_re))
                        cov_re = np.dot(cov_re.T, cov_re)
                        vcomp = np.random.normal(size=2) ** 2
                        params = MixedLMParams.from_components(fe_params, cov_re=cov_re, vcomp=vcomp)
                        params_vec = params.get_packed(has_fe=not profile_fe, use_sqrt=use_sqrt)

                        # Check scores
                        gr = -model.score(params, profile_fe=profile_fe)
                        ngr = nd.approx_fprime(params_vec, loglike)
                        assert_allclose(gr, ngr, rtol=1e-3)

                    # Check Hessian matrices at the MLE (we don't have
                    # the profile Hessian matrix and we don't care
                    # about the Hessian for the square root
                    # transformed parameter).
                    if (profile_fe is False) and (use_sqrt is False):
                        hess = -model.hessian(rslt.params_object)
                        params_vec = rslt.params_object.get_packed(use_sqrt=False, has_fe=True)
                        loglike_h = loglike_function(model, profile_fe=False, has_fe=True)
                        nhess = nd.approx_hess(params_vec, loglike_h)
                        assert_allclose(hess, nhess, rtol=1e-3)
Пример #58
0
    def test_compare_numdiff(self):

        import statsmodels.tools.numdiff as nd

        n_grp = 200
        grpsize = 5
        k_fe = 3
        k_re = 2

        for jl in 0, 1:
            for reml in False, True:
                for cov_pen_wt in 0, 10:

                    cov_pen = penalties.PSD(cov_pen_wt)

                    np.random.seed(3558)
                    exog_fe = np.random.normal(size=(n_grp * grpsize, k_fe))
                    exog_re = np.random.normal(size=(n_grp * grpsize, k_re))
                    exog_re[:, 0] = 1
                    slopes = np.random.normal(size=(n_grp, k_re))
                    slopes = np.kron(slopes, np.ones((grpsize, 1)))
                    re_values = (slopes * exog_re).sum(1)
                    err = np.random.normal(size=n_grp * grpsize)
                    endog = exog_fe.sum(1) + re_values + err
                    groups = np.kron(range(n_grp), np.ones(grpsize))

                    if jl == 0:
                        md = MixedLM(endog, exog_fe, groups, exog_re)
                        score = lambda x: -md.score_sqrt(x)
                        hessian = lambda x: -md.hessian_sqrt(x)
                    else:
                        md = MixedLM(endog,
                                     exog_fe,
                                     groups,
                                     exog_re,
                                     use_sqrt=False)
                        score = lambda x: -md.score_full(x)
                        hessian = lambda x: -md.hessian_full(x)
                    md.reml = reml
                    md.cov_pen = cov_pen
                    loglike = lambda x: -md.loglike(x)
                    rslt = md.fit()

                    # Test the score at several points.
                    for kr in range(5):
                        fe_params = np.random.normal(size=k_fe)
                        cov_re = np.random.normal(size=(k_re, k_re))
                        cov_re = np.dot(cov_re.T, cov_re)
                        params = MixedLMParams.from_components(
                            fe_params, cov_re)
                        if jl == 0:
                            params_vec = params.get_packed()
                        else:
                            params_vec = params.get_packed(use_sqrt=False)

                        # Check scores
                        gr = score(params)
                        ngr = nd.approx_fprime(params_vec, loglike)
                        assert_allclose(gr, ngr, rtol=1e-2)

                        # Hessian matrices don't agree well away from
                        # the MLE.
                        #if cov_pen_wt == 0:
                        #    hess = hessian(params)
                        #    nhess = nd.approx_hess(params_vec, loglike)
                        #    assert_allclose(hess, nhess, rtol=1e-2)

                    # Check Hessian matrices at the MLE.
                    if cov_pen_wt == 0:
                        hess = hessian(rslt.params_object)
                        params_vec = rslt.params_object.get_packed()
                        nhess = nd.approx_hess(params_vec, loglike)
                        assert_allclose(hess, nhess, rtol=1e-2)