Пример #1
0
    def test_rainbow(self):
        #rainbow test
        #> rt = raintest(fm)
        #> mkhtest_f(rt, 'raintest', 'f')
        raintest = dict(statistic=0.6809600116739604, pvalue=0.971832843583418,
                        parameters=(101, 98), distr='f')

        #> rt = raintest(fm, center=0.4)
        #> mkhtest_f(rt, 'raintest_center_04', 'f')
        raintest_center_04 = dict(statistic=0.682635074191527,
                                  pvalue=0.971040230422121,
                                  parameters=(101, 98), distr='f')

        #> rt = raintest(fm, fraction=0.4)
        #> mkhtest_f(rt, 'raintest_fraction_04', 'f')
        raintest_fraction_04 = dict(statistic=0.565551237772662,
                                    pvalue=0.997592305968473,
                                    parameters=(122, 77), distr='f')

        #> rt = raintest(fm, order.by=ggdp)
        #Warning message:
        #In if (order.by == "mahalanobis") { :
        #  the condition has length > 1 and only the first element will be used
        #> mkhtest_f(rt, 'raintest_order_gdp', 'f')
        raintest_order_gdp = dict(statistic=1.749346160513353,
                                  pvalue=0.002896131042494884,
                                  parameters=(101, 98), distr='f')

        rb = smsdia.linear_rainbow(self.res)
        compare_t_est(rb, raintest, decimal=(13, 14))
        rb = smsdia.linear_rainbow(self.res, frac=0.4)
        compare_t_est(rb, raintest_fraction_04, decimal=(13, 14))
Пример #2
0
    def test_rainbow(self):
        #rainbow test
        #> rt = raintest(fm)
        #> mkhtest_f(rt, 'raintest', 'f')
        raintest = dict(statistic=0.6809600116739604, pvalue=0.971832843583418,
                        parameters=(101, 98), distr='f')

        #> rt = raintest(fm, center=0.4)
        #> mkhtest_f(rt, 'raintest_center_04', 'f')
        raintest_center_04 = dict(statistic=0.682635074191527,
                                  pvalue=0.971040230422121,
                                  parameters=(101, 98), distr='f')

        #> rt = raintest(fm, fraction=0.4)
        #> mkhtest_f(rt, 'raintest_fraction_04', 'f')
        raintest_fraction_04 = dict(statistic=0.565551237772662,
                                    pvalue=0.997592305968473,
                                    parameters=(122, 77), distr='f')

        #> rt = raintest(fm, order.by=ggdp)
        #Warning message:
        #In if (order.by == "mahalanobis") { :
        #  the condition has length > 1 and only the first element will be used
        #> mkhtest_f(rt, 'raintest_order_gdp', 'f')
        raintest_order_gdp = dict(statistic=1.749346160513353,
                                  pvalue=0.002896131042494884,
                                  parameters=(101, 98), distr='f')

        rb = smsdia.linear_rainbow(self.res)
        compare_t_est(rb, raintest, decimal=(13, 14))
        rb = smsdia.linear_rainbow(self.res, frac=0.4)
        compare_t_est(rb, raintest_fraction_04, decimal=(13, 14))
def linearity_check(model):

    rainbow_statistic, rainbow_p_value = linear_rainbow(model)

    print("Rainbow statistic:", rainbow_statistic)
    print("Rainbow p-value:", rainbow_p_value)
    pass
def test_assumptions(df, model, ivar):
    # model residuals
    resids = model.resid

    # df with only features
    idv_df = df[ivar]

    # Plot qq-plot for normality and scatterplot for homoscedasticity
    sm.graphics.qqplot(resids, dist=stats.norm, line='45', fit=True)

    fig, ax = plt.subplots()
    ax.scatter(resids, model.predict())

    # Rainbow fit test to check for linearity
    rb_test = at.linear_rainbow(model)

    #print results of rainbow fit test
    print('Rainbow test statistic: {}\nRainbow test p-value: {}'.format(rb_test[0], rb_test[1]))

    # Jarque-Bera (JB) test to check for normality
    jb_test = sms.jarque_bera(resids)

    #Print results of JB test
    print('JB test statistic: {}\nJB test p-value: {}'.format(jb_test[0], jb_test[1]))

    # Breusch Pagan test for homoscedasticity and scatter plot of resids and predicted values
    bp_test = at.het_breuschpagan(resids, idv_df)
    print('Breusch Pagan test statistic: {}\nBreusch Pagan p-value: {}'.format(bp_test[0], bp_test[1]))

    # Variance Inflation Factor (VIF) to check for independence
    # vif_features = pd.DataFrame()
    # vif_features['vif'] = [vif(idv_df.values, i) for i in range(idv_df.shape[1])]
    # vif_features['features'] = idv_df.columns
    # print('VIF: {}'.format(vif_features.vif.mean()))
Пример #5
0
def rainbow_stats(model):
    '''
    given a regression model, this function returns the values from a rainbow test stored as a dictionary
    '''
    rainbow_statistic, rainbow_p_value = linear_rainbow(model)
    return {
        'rainbow_stat': rainbow_statistic,
        'rainbow_p_value': rainbow_p_value
    }
def linearity_check(model):

    rainbow_statistic, rainbow_p_value = linear_rainbow(model)

    print("Rainbow statistic:", rainbow_statistic)
    print("Rainbow p-value:", rainbow_p_value)
    print("\n")
    print(
        "The null hypothesis is that the model is linearly predicted by the features,\
alternative hypothesis is that it is not. Thus returning a low p-value means that the current model violates the linearity assumption."
    )
Пример #7
0
def create_model(df, y, X):
    """df = dataframe with data
    y = target variable
    X = list of features
    Runs data through ols model and prints results.
    Also checks the assumptions of linear regression.
    Uses Rainbow test to check linearity.
    For independence, if there is more than one feature, will calculate the variance inflation factor for each feature.
    Runs the Breusch-Pagan test for homoscadasticity, and plots predicted life expectancy vs the residuals.  
     
    """
    model_df = df[[y, *X]]
    Formula = y + ' ~ ' + X[0]
    for i in range(len(X) - 1):
        Formula += ' + '
        Formula += X[i + 1]
    model = ols(formula=Formula, data=model_df)
    model_results = model.fit()
    print(model_results.summary())

    #Check Linearity
    rainbow_statistic, rainbow_p_value = linear_rainbow(model_results)
    print(
        '\n\nCheck Assumptions of Linear Regression\n\nLinearity\nRainbow Statistic:',
        rainbow_statistic)
    print('Rainbow p-value:', rainbow_p_value)

    #Independence
    vif_df = pd.DataFrame()
    rows = model_df[X].values
    if len(X) != 1:
        vif_df['VIF'] = [
            variance_inflation_factor(rows, i) for i in range(len(X))
        ]
        vif_df['feature'] = X
        print('\n\nIndependence\n', vif_df)

    # Homoscadasticity
    y = model_df[y]
    y_hat = model_results.predict()
    fig2, ax2 = plt.subplots()
    ax2.set(xlabel='Predicted Sale Price',
            ylabel='Residuals (Predicted - Actual Sale Price)')
    ax2.scatter(x=y_hat, y=y_hat - y, color='blue', alpha=0.2)

    lm, lm_p_value, fvalue, f_p_value = het_breuschpagan(
        y - y_hat, model_df[X])
    print('\n\nHomoscadasticity\nLagrange Multiplier p-value:', lm_p_value)
    print('F-statistic p-value:', f_p_value)

    return
def rainbow_test(result):
    """
    Accepts:
        result = model.fit() 
    Performs Rainbow Test and prints results
    """
    rainbow_statistic, rainbow_p_value = linear_rainbow(result)
    print("Statistic =", rainbow_statistic, "P_Value =", rainbow_p_value)
    print(
        "The null hypothesis H0 is that the model is linearly predicted by the features,\n alternative hypothesis Ha is that it is not."
    )
    print(f'stat={rainbow_statistic:.3f}, p={rainbow_p_value:.3f}')
    if rainbow_p_value > 0.05:
        print(
            f"We have {rainbow_p_value:.3f} > 0.05. We don't have evidence to reject the H0,\n thus the current model satisfies the linearity assumption."
        )
    else:
        print(
            f"We have enough evidence to reject H0, since  {rainbow_p_value:.3f} < 0.05 and coclude that the model doesn't satisfy liearity assumption."
        )
Пример #9
0
def ols_diag(df,X,model, nlag=1, remove_outliers=False):
    
    ### Small Info
    print("Dataset:","\t",len(df))
    print("X:","\t",len(X))
    
    ## Residdual Normalaity Test
    print("1. Normality Test: ", "Jarque-Bera", "Test")
    jb_h0="Residual Normally distributed"
    jb_h1="Residual Not Normally distributed"
    jb_p=smt.jarque_bera(model.resid)[1]
    hypo_out(jb_p, jb_h0, jb_h1)

    ## Data Linearity Test
    print("2. Linearity Test: ","Rainbow", "Test")
    r_h0="Data have linear relationship"
    r_h1="Data do not have linear relationship"
    r_t,r_p=smd.linear_rainbow(model)
    hypo_out(r_p, r_h0, r_h1)
    
    
    ## Hetrosedacity Test: Scaling error
    print("3. Heteroscedasticity Test: ","Breusch-Pagan", "Test")
    bp_h0="Data have same variance accross"
    bp_h1="Data do not have have same variance accross"
    bp_p=smd.het_breuschpagan(model.resid, model.model.exog)[1]
    hypo_out(bp_p, bp_h0, bp_h1)
    
    ## Autocrrelation Test
    print("4. Autocorrelation Test: ","Breusch Godfrey", "Test")
    bg_h0="Data are not related to themself:"+str(nlag)+" lag"
    bg_h1="Data are related to themself by:"+str(nlag)+" lag"
    bg_p=smd.acorr_breusch_godfrey(model, nlag)[1]
    hypo_out(bg_p, bg_h0, bg_h1)
    
    ## Sum residulas =0 
    print("5. Sum of residuals == 0")
    sr_h0="Sum of residuals = 0"
    sr_h1="Sum of residual != 0"
    if round(sum(model.resid),1)==0:
        sr_p=1
    else:
        sr_p=0
    hypo_out(sr_p, sr_h0, sr_h1)
    
    
    ## List of outliers 
    print("6. Checking outliers:")
    outliers(df,model,remove_outliers=False)
  

    ## Endogenity Check: 
#     print("7. Checking Endogenity:"; )
#     heatmap(X)

    ## Multicolinearity test: 
    print("7. Checking multicolinearity")
    try: 
        heatmap(X)
    except:
        print("Cannot perrform this test")
def Fig_OLS_Checks():

    #fs = 10 # font size used across figures
    #color = str()
    #OrC = 'open'

    SampSizes = [5, 6, 7, 8, 9, 10, 13, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100]
    Iterations = 100

    fig = plt.figure(figsize=(12, 8))

    # MODEL PARAMETERS
    Rare_MacIntercept_pVals = [] # List to hold coefficient p-values
    Rare_MacIntercept_Coeffs = [] # List to hold coefficients

    Rich_MacIntercept_pVals = []
    Rich_MacIntercept_Coeffs = []

    Dom_MacIntercept_pVals = []
    Dom_MacIntercept_Coeffs = []

    Even_MacIntercept_pVals = []
    Even_MacIntercept_Coeffs = []

    Rare_MicIntercept_pVals = []
    Rare_MicIntercept_Coeffs = []

    Rich_MicIntercept_pVals = []
    Rich_MicIntercept_Coeffs = []

    Dom_MicIntercept_pVals = []
    Dom_MicIntercept_Coeffs = []

    Even_MicIntercept_pVals = []
    Even_MicIntercept_Coeffs = []


    Rare_MacSlope_pVals = []
    Rare_MacSlope_Coeffs = []

    Rich_MacSlope_pVals = []
    Rich_MacSlope_Coeffs = []

    Dom_MacSlope_pVals = []
    Dom_MacSlope_Coeffs = []

    Even_MacSlope_pVals = []
    Even_MacSlope_Coeffs = []

    Rare_MicSlope_pVals = []
    Rare_MicSlope_Coeffs = []

    Rich_MicSlope_pVals = []
    Rich_MicSlope_Coeffs = []

    Dom_MicSlope_pVals = []
    Dom_MicSlope_Coeffs = []

    Even_MicSlope_pVals = []
    Even_MicSlope_Coeffs = []


    RareR2List = [] # List to hold model R2
    RarepFList = [] # List to hold significance of model R2
    RichR2List = [] # List to hold model R2
    RichpFList = [] # List to hold significance of model R2
    DomR2List = [] # List to hold model R2
    DompFList = [] # List to hold significance of model R2
    EvenR2List = [] # List to hold model R2
    EvenpFList = [] # List to hold significance of model R2

    # ASSUMPTIONS OF LINEAR REGRESSION
    # 1. Error in predictor variables is negligible...presumably yes
    # 2. Variables are measured at the continuous level...yes

    # 3. The relationship is linear
    #RarepLinListHC = []
    RarepLinListRainB = []
    RarepLinListLM = []
    #RichpLinListHC = []
    RichpLinListRainB = []
    RichpLinListLM = []
    #DompLinListHC = []
    DompLinListRainB = []
    DompLinListLM = []
    #EvenpLinListHC = []
    EvenpLinListRainB = []
    EvenpLinListLM = []

    # 4. There are no significant outliers...need to find tests or measures

    # 5. Independence of observations (no serial correlation in residuals)
    RarepCorrListBG = []
    RarepCorrListF = []
    RichpCorrListBG = []
    RichpCorrListF = []
    DompCorrListBG = []
    DompCorrListF = []
    EvenpCorrListBG = []
    EvenpCorrListF = []

    # 6. Homoscedacticity
    RarepHomoHW = []
    RarepHomoHB = []
    RichpHomoHW = []
    RichpHomoHB = []
    DompHomoHW = []
    DompHomoHB = []
    EvenpHomoHW = []
    EvenpHomoHB = []

    # 7. Normally distributed residuals (errors)
    RarepNormListOmni = [] # Omnibus test for normality
    RarepNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    RarepNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RarepNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    RichpNormListOmni = [] # Omnibus test for normality
    RichpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    RichpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RichpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    DompNormListOmni = [] # Omnibus test for normality
    DompNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    DompNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    DompNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    EvenpNormListOmni = [] # Omnibus test for normality
    EvenpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
    EvenpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    EvenpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

    NLIST = []

    for SampSize in SampSizes:

        sRare_MacIntercept_pVals = [] # List to hold coefficient p-values
        sRare_MacIntercept_Coeffs = [] # List to hold coefficients

        sRich_MacIntercept_pVals = [] # List to hold coefficient p-values
        sRich_MacIntercept_Coeffs = [] # List to hold coefficients

        sDom_MacIntercept_pVals = []
        sDom_MacIntercept_Coeffs = []

        sEven_MacIntercept_pVals = []
        sEven_MacIntercept_Coeffs = []

        sRare_MicIntercept_pVals = []
        sRare_MicIntercept_Coeffs = []

        sRich_MicIntercept_pVals = []
        sRich_MicIntercept_Coeffs = []

        sDom_MicIntercept_pVals = []
        sDom_MicIntercept_Coeffs = []

        sEven_MicIntercept_pVals = []
        sEven_MicIntercept_Coeffs = []


        sRare_MacSlope_pVals = []
        sRare_MacSlope_Coeffs = []

        sRich_MacSlope_pVals = []
        sRich_MacSlope_Coeffs = []

        sDom_MacSlope_pVals = []
        sDom_MacSlope_Coeffs = []

        sEven_MacSlope_pVals = []
        sEven_MacSlope_Coeffs = []

        sRare_MicSlope_pVals = []
        sRare_MicSlope_Coeffs = []

        sRich_MicSlope_pVals = []
        sRich_MicSlope_Coeffs = []

        sDom_MicSlope_pVals = []
        sDom_MicSlope_Coeffs = []

        sEven_MicSlope_pVals = []
        sEven_MicSlope_Coeffs = []


        sRareR2List = [] # List to hold model R2
        sRarepFList = [] # List to hold significance of model R2
        sRichR2List = [] # List to hold model R2
        sRichpFList = [] # List to hold significance of model R2
        sDomR2List = [] # List to hold model R2
        sDompFList = [] # List to hold significance of model R2
        sEvenR2List = [] # List to hold model R2
        sEvenpFList = [] # List to hold significance of model R2

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #sRarepLinListHC = []
        sRarepLinListRainB = []
        sRarepLinListLM = []
        #sRichpLinListHC = []
        sRichpLinListRainB = []
        sRichpLinListLM = []
        #sDompLinListHC = []
        sDompLinListRainB = []
        sDompLinListLM = []
        #sEvenpLinListHC = []
        sEvenpLinListRainB = []
        sEvenpLinListLM = []

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        sRarepCorrListBG = []
        sRarepCorrListF = []
        sRichpCorrListBG = []
        sRichpCorrListF = []
        sDompCorrListBG = []
        sDompCorrListF = []
        sEvenpCorrListBG = []
        sEvenpCorrListF = []

        # 6. Homoscedacticity
        sRarepHomoHW = []
        sRarepHomoHB = []
        sRichpHomoHW = []
        sRichpHomoHB = []
        sDompHomoHW = []
        sDompHomoHB = []
        sEvenpHomoHW = []
        sEvenpHomoHB = []

        # 7. Normally distributed residuals (errors)
        sRarepNormListOmni = [] # Omnibus test for normality
        sRarepNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRarepNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRarepNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

        sRichpNormListOmni = [] # Omnibus test for normality
        sRichpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRichpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRichpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

        sDompNormListOmni = [] # Omnibus test for normality
        sDompNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sDompNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sDompNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance

        sEvenpNormListOmni = [] # Omnibus test for normality
        sEvenpNormListJB = [] # Calculate residual skewness, kurtosis, and do the JB test for normality
        sEvenpNormListKS = [] # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sEvenpNormListAD = [] # Anderson-Darling test for normal distribution unknown mean and variance


        for iteration in range(Iterations):

            Nlist, Slist, Evarlist, ESimplist, ENeelist, EHeiplist, EQlist = [[], [], [], [], [], [], []]
            klist, Shanlist, BPlist, SimpDomlist, SinglesList, tenlist, onelist = [[], [], [], [], [], [], []]
            NmaxList, rareSkews, KindList = [[], [], []]
            NSlist = []

            ct = 0
            radDATA = []
            datasets = []
            GoodNames = ['EMPclosed', 'HMP', 'BIGN', 'TARA', 'BOVINE', 'HUMAN', 'LAUB', 'SED', 'CHU', 'CHINA', 'CATLIN', 'FUNGI', 'HYDRO', 'BBS', 'CBC', 'MCDB', 'GENTRY', 'FIA'] # all microbe data is MGRAST


            mlist = ['micro', 'macro']
            for m in mlist:
                for name in os.listdir(mydir +'data/'+m):
                    if name in GoodNames: pass
                    else: continue
                    path = mydir+'data/'+m+'/'+name+'/'+name+'-SADMetricData.txt'
                    num_lines = sum(1 for line in open(path))
                    datasets.append([name, m, num_lines])

            numMac = 0
            numMic = 0

            radDATA = []

            for d in datasets:

                name, kind, numlines = d
                lines = []
                lines = np.random.choice(range(1, numlines+1), SampSize, replace=True)

                path = mydir+'data/'+kind+'/'+name+'/'+name+'-SADMetricData.txt'

                for line in lines:
                    data = linecache.getline(path, line)
                    radDATA.append(data)

                #print name, kind, numlines, len(radDATA)

            for data in radDATA:

                data = data.split()
                if len(data) == 0:
                    print 'no data'
                    continue

                name, kind, N, S, Var, Evar, ESimp, EQ, O, ENee, EPielou, EHeip, BP, SimpDom, Nmax, McN, skew, logskew, chao1, ace, jknife1, jknife2, margalef, menhinick, preston_a, preston_S = data


                N = float(N)
                S = float(S)

                Nlist.append(float(np.log(N)))
                Slist.append(float(np.log(S)))
                NSlist.append(float(np.log(N/S)))

                Evarlist.append(float(np.log(float(Evar))))
                ESimplist.append(float(np.log(float(ESimp))))
                KindList.append(kind)

                BPlist.append(float(BP))
                NmaxList.append(float(np.log(float(BP)*float(N))))
                EHeiplist.append(float(EHeip))

                # lines for the log-modulo transformation of skewnness
                skew = float(skew)
                sign = 1
                if skew < 0: sign = -1

                lms = np.log(np.abs(skew) + 1)
                lms = lms * sign
                #if lms > 3: print name, N, S
                rareSkews.append(float(lms))

                if kind == 'macro': numMac += 1
                elif kind == 'micro': numMic += 1

                ct+=1


            #print 'Sample Size:',SampSize, ' Mic:', numMic,'Mac:', numMac

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Rarity'] = list(rareSkews)
            d['Kind'] = list(KindList)

            RarityResults = smf.ols('Rarity ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Richness'] = list(Slist)
            d['Kind'] = list(KindList)

            RichnessResults = smf.ols('Richness ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print RichnessResults.summary(), '\n'

            # Multiple regression for Dominance
            d = pd.DataFrame({'N': list(Nlist)})
            d['Dominance'] = list(NmaxList)
            d['Kind'] = list(KindList)

            DomResults = smf.ols('Dominance ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print DomResults.summary(), '\n'

            # Multiple regression for Evenness
            d = pd.DataFrame({'N': list(Nlist)})
            d['Evenness'] = list(ESimplist)
            d['Kind'] = list(KindList)

            EvenResults = smf.ols('Evenness ~ N * Kind', d).fit() # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            RareResids = RarityResults.resid # residuals of the model
            RichResids = RichnessResults.resid # residuals of the model
            DomResids = DomResults.resid # residuals of the model
            EvenResids = EvenResults.resid # residuals of the model

            # MODEL RESULTS/FIT
            RareFpval = RarityResults.f_pvalue
            Rarer2 = RarityResults.rsquared # coefficient of determination
            #Adj_r2 = RareResults.rsquared_adj # adjusted
            RichFpval = RichnessResults.f_pvalue
            Richr2 = RichnessResults.rsquared # coefficient of determination
            #Adj_r2 = RichnessResults.rsquared_adj # adjusted

            DomFpval = DomResults.f_pvalue
            Domr2 = DomResults.rsquared # coefficient of determination
            #Adj_r2 = DomResults.rsquared_adj # adjusted
            EvenFpval = EvenResults.f_pvalue
            Evenr2 = EvenResults.rsquared # coefficient of determination
            #Adj_r2 = EvenResuls.rsquared_adj # adjusted

            # MODEL PARAMETERS and p-values
            Rareparams = RarityResults.params
            Rareparams = Rareparams.tolist()
            Rarepvals = RarityResults.pvalues
            Rarepvals = Rarepvals.tolist()

            Richparams = RichnessResults.params
            Richparams = Richparams.tolist()
            Richpvals = RichnessResults.pvalues
            Richpvals = Richpvals.tolist()

            Domparams = DomResults.params
            Domparams = Domparams.tolist()
            Dompvals = DomResults.pvalues
            Dompvals = Dompvals.tolist()

            Evenparams = EvenResults.params
            Evenparams = Evenparams.tolist()
            Evenpvals = EvenResults.pvalues
            Evenpvals = Evenpvals.tolist()


            sRare_MacIntercept_pVals.append(Rarepvals[0])
            sRare_MacIntercept_Coeffs.append(Rareparams[0])

            sRich_MacIntercept_pVals.append(Rarepvals[0])
            sRich_MacIntercept_Coeffs.append(Rareparams[0])

            sDom_MacIntercept_pVals.append(Dompvals[0])
            sDom_MacIntercept_Coeffs.append(Domparams[0])

            sEven_MacIntercept_pVals.append(Evenpvals[0])
            sEven_MacIntercept_Coeffs.append(Evenparams[0])

            sRare_MicIntercept_pVals.append(Rarepvals[1])
            if Rarepvals[1] > 0.05:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])
            else:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])

            sRich_MicIntercept_pVals.append(Richpvals[1])
            if Richpvals[1] > 0.05:
                sRich_MicIntercept_Coeffs.append(Richparams[1])
            else:
                sRich_MicIntercept_Coeffs.append(Richparams[1])

            sDom_MicIntercept_pVals.append(Dompvals[1])
            if Dompvals[1] > 0.05:
                sDom_MicIntercept_Coeffs.append(Domparams[1])
            else:
                sDom_MicIntercept_Coeffs.append(Domparams[1])

            sEven_MicIntercept_pVals.append(Evenpvals[1])
            if Evenpvals[1] > 0.05:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])
            else:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])


            sRare_MacSlope_pVals.append(Rarepvals[2])
            sRare_MacSlope_Coeffs.append(Rareparams[2])

            sRich_MacSlope_pVals.append(Richpvals[2])
            sRich_MacSlope_Coeffs.append(Richparams[2])

            sDom_MacSlope_pVals.append(Dompvals[2])
            sDom_MacSlope_Coeffs.append(Domparams[2])

            sEven_MacSlope_pVals.append(Evenpvals[2])
            sEven_MacSlope_Coeffs.append(Evenparams[2])


            sRare_MicSlope_pVals.append(Rarepvals[3])
            if Rarepvals[3] > 0.05:
                sRare_MicSlope_Coeffs.append(Rareparams[3])
            else:
                sRare_MicSlope_Coeffs.append(Rareparams[3])

            sRich_MicSlope_pVals.append(Richpvals[3])
            if Richpvals[3] > 0.05:
                sRich_MicSlope_Coeffs.append(Richparams[3])
            else:
                sRich_MicSlope_Coeffs.append(Richparams[3])

            sDom_MicSlope_pVals.append(Dompvals[3])
            if Dompvals[3] > 0.05:
                sDom_MicSlope_Coeffs.append(Domparams[3])
            else:
                sDom_MicSlope_Coeffs.append(Domparams[3])

            sEven_MicSlope_pVals.append(Evenpvals[3])
            if Evenpvals[3] > 0.05:
                sEven_MicSlope_Coeffs.append(Evenparams[3])
            else:
                sEven_MicSlope_Coeffs.append(Evenparams[3])

            sRareR2List.append(Rarer2)
            sRarepFList.append(RareFpval)
            sRichR2List.append(Richr2)
            sRichpFList.append(RichFpval)
            sDomR2List.append(Domr2)
            sDompFList.append(DomFpval)
            sEvenR2List.append(Evenr2)
            sEvenpFList.append(EvenFpval)

            # TESTS OF LINEAR REGRESSION ASSUMPTIONS
            # Error in predictor variables is negligible...Presumably Yes
            # Variables are measured at the continuous level...Definitely Yes

            # TESTS FOR LINEARITY, i.e., WHETHER THE DATA ARE CORRECTLY MODELED AS LINEAR
            #HC = smd.linear_harvey_collier(RarityResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sRarepLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(DomResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sDompLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(EvenResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sEvenpLinListHC.append(HC)

            RB = smd.linear_rainbow(RarityResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRarepLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(RichnessResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRichpLinListRainB.append(RB[1])

            RB = smd.linear_rainbow(DomResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sDompLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(EvenResults) # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sEvenpLinListRainB.append(RB[1])

            LM = smd.linear_lm(RarityResults.resid, RarityResults.model.exog) # Lagrangian multiplier test for linearity
            sRarepLinListLM.append(LM[1])
            LM = smd.linear_lm(RichnessResults.resid, RichnessResults.model.exog) # Lagrangian multiplier test for linearity
            sRichpLinListLM.append(LM[1])

            LM = smd.linear_lm(DomResults.resid, DomResults.model.exog) # Lagrangian multiplier test for linearity
            sDompLinListLM.append(LM[1])
            LM = smd.linear_lm(EvenResults.resid, EvenResults.model.exog) # Lagrangian multiplier test for linearity
            sEvenpLinListLM.append(LM[1])

            # INDEPENDENCE OF OBSERVATIONS (no serial correlation in residuals)
            BGtest = smd.acorr_breush_godfrey(RarityResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RareResids, lags=None, boxpierce=True)
            sRarepCorrListBG.append(BGtest[1])
            sRarepCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(RichnessResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RichResids, lags=None, boxpierce=True)
            sRichpCorrListBG.append(BGtest[1])
            sRichpCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(DomResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(DomResids, lags=None, boxpierce=True)
            sDompCorrListBG.append(BGtest[1])
            sDompCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(EvenResults, nlags=None, store=False) # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
                                # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(EvenResids, lags=None, boxpierce=True)
            sEvenpCorrListBG.append(BGtest[1])
            sEvenpCorrListF.append(BGtest[3])

            # There are no significant outliers...Need tests or measures/metrics

            # HOMOSCEDASTICITY

            # These tests return:
            # 1. lagrange multiplier statistic,
            # 2. p-value of lagrange multiplier test,
            # 3. f-statistic of the hypothesis that the error variance does not depend on x,
            # 4. p-value for the f-statistic

            HW = sms.het_white(RareResids, RarityResults.model.exog)
            sRarepHomoHW.append(HW[3])
            HW = sms.het_white(RichResids, RichnessResults.model.exog)
            sRichpHomoHW.append(HW[3])

            HW = sms.het_white(DomResids, DomResults.model.exog)
            sDompHomoHW.append(HW[3])
            HW = sms.het_white(EvenResids, EvenResults.model.exog)
            sEvenpHomoHW.append(HW[3])

            HB = sms.het_breushpagan(RareResids, RarityResults.model.exog)
            sRarepHomoHB.append(HB[3])
            HB = sms.het_breushpagan(RichResids, RichnessResults.model.exog)
            sRichpHomoHB.append(HB[3])

            HB = sms.het_breushpagan(DomResids, DomResults.model.exog)
            sDompHomoHB.append(HB[3])
            HB = sms.het_breushpagan(EvenResids, EvenResults.model.exog)
            sEvenpHomoHB.append(HB[3])

            # 7. NORMALITY OF ERROR TERMS
            O = sms.omni_normtest(RareResids)
            sRarepNormListOmni.append(O[1])
            O = sms.omni_normtest(RichResids)
            sRichpNormListOmni.append(O[1])
            O = sms.omni_normtest(DomResids)
            sDompNormListOmni.append(O[1])
            O = sms.omni_normtest(EvenResids)
            sEvenpNormListOmni.append(O[1])

            JB = sms.jarque_bera(RareResids)
            sRarepNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(RichResids)
            sRichpNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(DomResids)
            sDompNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(EvenResids)
            sEvenpNormListJB.append(JB[1]) # Calculate residual skewness, kurtosis, and do the JB test for normality

            KS = smd.kstest_normal(RareResids)
            sRarepNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(RichResids)
            sRichpNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(DomResids)
            sDompNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(EvenResids)
            sEvenpNormListKS.append(KS[1]) # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance

            AD = smd.normal_ad(RareResids)
            sRarepNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(RichResids)
            sRichpNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(DomResids)
            sDompNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(EvenResids)
            sEvenpNormListAD.append(AD[1]) # Anderson-Darling test for normal distribution unknown mean and variance

            print 'Sample size:',SampSize, 'iteration:',iteration

        NLIST.append(SampSize)

        Rare_MacIntercept_pVals.append(np.mean(sRare_MacIntercept_pVals)) # List to hold coefficient p-values
        Rare_MacIntercept_Coeffs.append(np.mean(sRare_MacIntercept_Coeffs)) # List to hold coefficients

        Rich_MacIntercept_pVals.append(np.mean(sRich_MacIntercept_pVals)) # List to hold coefficient p-values
        Rich_MacIntercept_Coeffs.append(np.mean(sRich_MacIntercept_Coeffs)) # List to hold coefficients

        Dom_MacIntercept_pVals.append(np.mean(sDom_MacIntercept_pVals))
        Dom_MacIntercept_Coeffs.append(np.mean(sDom_MacIntercept_Coeffs))

        Even_MacIntercept_pVals.append(np.mean(sEven_MacIntercept_pVals))
        Even_MacIntercept_Coeffs.append(np.mean(sEven_MacIntercept_Coeffs))

        Rare_MicIntercept_pVals.append(np.mean(sRare_MicIntercept_pVals))
        Rare_MicIntercept_Coeffs.append(np.mean(sRare_MicIntercept_Coeffs))

        Rich_MicIntercept_pVals.append(np.mean(sRich_MicIntercept_pVals))
        Rich_MicIntercept_Coeffs.append(np.mean(sRich_MicIntercept_Coeffs))

        Dom_MicIntercept_pVals.append(np.mean(sDom_MicIntercept_pVals))
        Dom_MicIntercept_Coeffs.append(np.mean(sDom_MicIntercept_Coeffs))

        Even_MicIntercept_pVals.append(np.mean(sEven_MicIntercept_pVals))
        Even_MicIntercept_Coeffs.append(np.mean(sEven_MicIntercept_Coeffs))

        Rare_MacSlope_pVals.append(np.mean(sRare_MacSlope_pVals)) # List to hold coefficient p-values
        Rare_MacSlope_Coeffs.append(np.mean(sRare_MacSlope_Coeffs)) # List to hold coefficients

        Rich_MacSlope_pVals.append(np.mean(sRich_MacSlope_pVals)) # List to hold coefficient p-values
        Rich_MacSlope_Coeffs.append(np.mean(sRich_MacSlope_Coeffs)) # List to hold coefficients

        Dom_MacSlope_pVals.append(np.mean(sDom_MacSlope_pVals))
        Dom_MacSlope_Coeffs.append(np.mean(sDom_MacSlope_Coeffs))

        Even_MacSlope_pVals.append(np.mean(sEven_MacSlope_pVals))
        Even_MacSlope_Coeffs.append(np.mean(sEven_MacSlope_Coeffs))

        Rare_MicSlope_pVals.append(np.mean(sRare_MicSlope_pVals))
        Rare_MicSlope_Coeffs.append(np.mean(sRare_MicSlope_Coeffs))

        Rich_MicSlope_pVals.append(np.mean(sRich_MicSlope_pVals))
        Rich_MicSlope_Coeffs.append(np.mean(sRich_MicSlope_Coeffs))

        Dom_MicSlope_pVals.append(np.mean(sDom_MicSlope_pVals))
        Dom_MicSlope_Coeffs.append(np.mean(sDom_MicSlope_Coeffs))

        Even_MicSlope_pVals.append(np.mean(sEven_MicSlope_pVals))
        Even_MicSlope_Coeffs.append(np.mean(sEven_MicSlope_Coeffs))


        RareR2List.append(np.mean(sRareR2List))
        RarepFList.append(np.mean(sRarepFList))
        RichR2List.append(np.mean(sRichR2List))
        RichpFList.append(np.mean(sRichpFList))
        DomR2List.append(np.mean(sDomR2List))
        DompFList.append(np.mean(sDompFList))
        EvenR2List.append(np.mean(sEvenR2List))
        EvenpFList.append(np.mean(sEvenpFList))

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #RarepLinListHC.append(np.mean(sRarepLinListHC))
        RarepLinListRainB.append(np.mean(sRarepLinListRainB))
        RarepLinListLM.append(np.mean(sRarepLinListLM))
        #RichpLinListHC.append(np.mean(sRichpLinListHC))
        RichpLinListRainB.append(np.mean(sRichpLinListRainB))
        RichpLinListLM.append(np.mean(sRichpLinListLM))
        #DompLinListHC.append(np.mean(sDompLinListHC))
        DompLinListRainB.append(np.mean(sDompLinListRainB))
        DompLinListLM.append(np.mean(sDompLinListLM))
        #EvenpLinListHC.append(np.mean(sEvenpLinListHC))
        EvenpLinListRainB.append(np.mean(sEvenpLinListRainB))
        EvenpLinListLM.append(np.mean(sEvenpLinListLM))

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        RarepCorrListBG.append(np.mean(sRarepCorrListBG))
        RarepCorrListF.append(np.mean(sRarepCorrListF))
        RichpCorrListBG.append(np.mean(sRichpCorrListBG))
        RichpCorrListF.append(np.mean(sRichpCorrListF))
        DompCorrListBG.append(np.mean(sDompCorrListBG))
        DompCorrListF.append(np.mean(sDompCorrListF))
        EvenpCorrListBG.append(np.mean(sEvenpCorrListBG))
        EvenpCorrListF.append(np.mean(sEvenpCorrListF))

        # 6. Homoscedacticity
        RarepHomoHW.append(np.mean(sRarepHomoHW))
        RarepHomoHB.append(np.mean(sRarepHomoHB))
        RichpHomoHB.append(np.mean(sRichpHomoHB))
        RichpHomoHW.append(np.mean(sRichpHomoHW))
        DompHomoHW.append(np.mean(sDompHomoHW))
        DompHomoHB.append(np.mean(sDompHomoHB))
        EvenpHomoHW.append(np.mean(sEvenpHomoHW))
        EvenpHomoHB.append(np.mean(sEvenpHomoHB))

        # 7. Normally distributed residuals (errors)
        RarepNormListOmni.append(np.mean(sRarepNormListOmni))
        RarepNormListJB.append(np.mean(sRarepNormListJB))
        RarepNormListKS.append(np.mean(sRarepNormListKS))
        RarepNormListAD.append(np.mean(sRarepNormListAD))

        RichpNormListOmni.append(np.mean(sRichpNormListOmni))
        RichpNormListJB.append(np.mean(sRichpNormListJB))
        RichpNormListKS.append(np.mean(sRichpNormListKS))
        RichpNormListAD.append(np.mean(sRichpNormListAD))

        DompNormListOmni.append(np.mean(sDompNormListOmni))
        DompNormListJB.append(np.mean(sDompNormListJB))
        DompNormListKS.append(np.mean(sDompNormListKS))
        DompNormListAD.append(np.mean(sDompNormListAD))

        EvenpNormListOmni.append(np.mean(sEvenpNormListOmni))
        EvenpNormListJB.append(np.mean(sEvenpNormListJB))
        EvenpNormListKS.append(np.mean(sEvenpNormListKS))
        EvenpNormListAD.append(np.mean(sEvenpNormListAD))


    fig.add_subplot(4, 3, 1)
    plt.xlim(min(SampSizes)-1,max(SampSizes)+10)
    plt.ylim(0,1)
    plt.xscale('log')
    # Rarity    R2 vs. Sample Size
    plt.plot(NLIST,RareR2List,  c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.6, 'Rarity', rotation='vertical', fontsize=16)
    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 2)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    plt.ylim(0.0, 0.16)
    # Rarity    Coeffs vs. Sample Size
    plt.plot(NLIST, Rare_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rare_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RareIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 3)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.ylim(0.0, 0.6)
    plt.xscale('log')
    # Rarity    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RarepLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RarepLinListRainB,  c='m')
    plt.plot(NLIST,RarepLinListLM,  c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RarepCorrListBG,  c='c')
    plt.plot(NLIST,RarepCorrListF,  c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST,RarepHomoHW,  c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RarepHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST,RarepNormListOmni,  c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RarepNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RarepNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RarepNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')

    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 4)
    plt.xscale('log')
    plt.ylim(0,1)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, DomR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.82, 'Dominance', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 5)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Dominance     Coeffs vs. Sample Size
    plt.plot(NLIST, Dom_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Dom_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, DomIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')

    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 6)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    #plt.yscale('log')
    plt.ylim(0, 0.6)
    # Dominance     p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(DompLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, DompLinListRainB, c='m')
    plt.plot(NLIST, DompLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, DompCorrListBG, c='c')
    plt.plot(NLIST, DompCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, DompHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, DompHomoHB, c='r',ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, DompNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, DompNormListJB, c='Lime', ls='-')
    #plt.plot(NLIST, DompNormListKS, c='Lime', ls='--', lw=3)
    #plt.plot(NLIST, DompNormListAD, c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 7)
    plt.text(1.01, 0.7, 'Evenness', rotation='vertical', fontsize=16)
    plt.xscale('log')
    plt.ylim(0,1)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Evenness      R2 vs. Sample Size
    plt.plot(NLIST, EvenR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 8)
    plt.ylim(-0.25, 0.0)
    plt.xscale('log')
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Evenness      Coeffs vs. Sample Size
    plt.plot(NLIST, Even_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Even_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, EvenIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 9)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    plt.ylim(0.0, 0.3)
    # Evenness      p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(EvenpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, EvenpLinListRainB, c='m')
    plt.plot(NLIST, EvenpLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, EvenpCorrListBG, c='c')
    plt.plot(NLIST, EvenpCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, EvenpHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, EvenpHomoHB, c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, EvenpNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, EvenpNormListJB, c='Lime', alpha=0.9, ls='-')
    #plt.plot(NLIST, EvenpNormListKS, c='Lime', alpha=0.9, ls='--', lw=3)
    #plt.plot(NLIST, EvenpNormListAD, c='Lime', alpha=0.9, ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 10)
    plt.xscale('log')
    plt.ylim(0,1)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, RichR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.xlabel('Sample size', fontsize=14)
    plt.text(1.01, 0.82, 'Richness', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4,prop={'size':14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 11)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    # Richness    Coeffs vs. Sample Size
    plt.plot(NLIST, Rich_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rich_MacSlope_Coeffs,  c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RichIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    plt.xlabel('Sample size', fontsize=14)

    leg = plt.legend(loc=10,prop={'size':8})
    leg.draw_frame(False)


    fig.add_subplot(4, 3, 12)
    plt.xlim(min(SampSizes)-1, max(SampSizes)+10)
    plt.xscale('log')
    # Richness    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RichpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RichpLinListRainB,  c='m')
    plt.plot(NLIST,RichpLinListLM,  c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RichpCorrListBG,  c='c')
    plt.plot(NLIST, EvenpCorrListF,  c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST,RichpHomoHW,  c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RichpHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST,RichpNormListOmni,  c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RichpNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RichpNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RichpNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    plt.xlabel('Sample size', fontsize=14)
    leg = plt.legend(loc=1,prop={'size':8})
    leg.draw_frame(False)
    #plt.tick_params(axis='both', which='major', labelsize=fs-3)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    plt.savefig(mydir+'figs/appendix/SampleSize/SampleSizeEffects.png', dpi=600, bbox_inches = "tight")
    #plt.close()
    #plt.show()

    return
fsm = ols(formula= "price ~ sqft_living", data=fsm_df)
fsm_results = fsm.fit()


fsm_results.summary()


sns.set_theme(color_codes=True)
f, ax = plt.subplots(figsize=(10, 8))


sns.regplot(x="sqft_living", y="price", data=fsm_df, ax=ax).set_title('Model1 Visualization');
plt.savefig('viz1.png')


rainbow_statistic, rainbow_p_value = linear_rainbow(fsm_results)
print("Rainbow statistic:", rainbow_statistic)
print("Rainbow p-value:", rainbow_p_value)


resid = fsm_results.resid
qq1 = sm.qqplot(resid, line ='45', fit=True, dist=stats.t)


y = fsm_df["price"]

y_hat = fsm_results.predict()


fig2, ax2 = plt.subplots()
ax2.set(xlabel="Price",
def Fig_OLS_Checks():

    #fs = 10 # font size used across figures
    #color = str()
    #OrC = 'open'

    SampSizes = [
        5, 6, 7, 8, 9, 10, 13, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100
    ]
    Iterations = 100

    fig = plt.figure(figsize=(12, 8))

    # MODEL PARAMETERS
    Rare_MacIntercept_pVals = []  # List to hold coefficient p-values
    Rare_MacIntercept_Coeffs = []  # List to hold coefficients

    Rich_MacIntercept_pVals = []
    Rich_MacIntercept_Coeffs = []

    Dom_MacIntercept_pVals = []
    Dom_MacIntercept_Coeffs = []

    Even_MacIntercept_pVals = []
    Even_MacIntercept_Coeffs = []

    Rare_MicIntercept_pVals = []
    Rare_MicIntercept_Coeffs = []

    Rich_MicIntercept_pVals = []
    Rich_MicIntercept_Coeffs = []

    Dom_MicIntercept_pVals = []
    Dom_MicIntercept_Coeffs = []

    Even_MicIntercept_pVals = []
    Even_MicIntercept_Coeffs = []

    Rare_MacSlope_pVals = []
    Rare_MacSlope_Coeffs = []

    Rich_MacSlope_pVals = []
    Rich_MacSlope_Coeffs = []

    Dom_MacSlope_pVals = []
    Dom_MacSlope_Coeffs = []

    Even_MacSlope_pVals = []
    Even_MacSlope_Coeffs = []

    Rare_MicSlope_pVals = []
    Rare_MicSlope_Coeffs = []

    Rich_MicSlope_pVals = []
    Rich_MicSlope_Coeffs = []

    Dom_MicSlope_pVals = []
    Dom_MicSlope_Coeffs = []

    Even_MicSlope_pVals = []
    Even_MicSlope_Coeffs = []

    RareR2List = []  # List to hold model R2
    RarepFList = []  # List to hold significance of model R2
    RichR2List = []  # List to hold model R2
    RichpFList = []  # List to hold significance of model R2
    DomR2List = []  # List to hold model R2
    DompFList = []  # List to hold significance of model R2
    EvenR2List = []  # List to hold model R2
    EvenpFList = []  # List to hold significance of model R2

    # ASSUMPTIONS OF LINEAR REGRESSION
    # 1. Error in predictor variables is negligible...presumably yes
    # 2. Variables are measured at the continuous level...yes

    # 3. The relationship is linear
    #RarepLinListHC = []
    RarepLinListRainB = []
    RarepLinListLM = []
    #RichpLinListHC = []
    RichpLinListRainB = []
    RichpLinListLM = []
    #DompLinListHC = []
    DompLinListRainB = []
    DompLinListLM = []
    #EvenpLinListHC = []
    EvenpLinListRainB = []
    EvenpLinListLM = []

    # 4. There are no significant outliers...need to find tests or measures

    # 5. Independence of observations (no serial correlation in residuals)
    RarepCorrListBG = []
    RarepCorrListF = []
    RichpCorrListBG = []
    RichpCorrListF = []
    DompCorrListBG = []
    DompCorrListF = []
    EvenpCorrListBG = []
    EvenpCorrListF = []

    # 6. Homoscedacticity
    RarepHomoHW = []
    RarepHomoHB = []
    RichpHomoHW = []
    RichpHomoHB = []
    DompHomoHW = []
    DompHomoHB = []
    EvenpHomoHW = []
    EvenpHomoHB = []

    # 7. Normally distributed residuals (errors)
    RarepNormListOmni = []  # Omnibus test for normality
    RarepNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    RarepNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RarepNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    RichpNormListOmni = []  # Omnibus test for normality
    RichpNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    RichpNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    RichpNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    DompNormListOmni = []  # Omnibus test for normality
    DompNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    DompNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    DompNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    EvenpNormListOmni = []  # Omnibus test for normality
    EvenpNormListJB = [
    ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
    EvenpNormListKS = [
    ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
    EvenpNormListAD = [
    ]  # Anderson-Darling test for normal distribution unknown mean and variance

    NLIST = []

    for SampSize in SampSizes:

        sRare_MacIntercept_pVals = []  # List to hold coefficient p-values
        sRare_MacIntercept_Coeffs = []  # List to hold coefficients

        sRich_MacIntercept_pVals = []  # List to hold coefficient p-values
        sRich_MacIntercept_Coeffs = []  # List to hold coefficients

        sDom_MacIntercept_pVals = []
        sDom_MacIntercept_Coeffs = []

        sEven_MacIntercept_pVals = []
        sEven_MacIntercept_Coeffs = []

        sRare_MicIntercept_pVals = []
        sRare_MicIntercept_Coeffs = []

        sRich_MicIntercept_pVals = []
        sRich_MicIntercept_Coeffs = []

        sDom_MicIntercept_pVals = []
        sDom_MicIntercept_Coeffs = []

        sEven_MicIntercept_pVals = []
        sEven_MicIntercept_Coeffs = []

        sRare_MacSlope_pVals = []
        sRare_MacSlope_Coeffs = []

        sRich_MacSlope_pVals = []
        sRich_MacSlope_Coeffs = []

        sDom_MacSlope_pVals = []
        sDom_MacSlope_Coeffs = []

        sEven_MacSlope_pVals = []
        sEven_MacSlope_Coeffs = []

        sRare_MicSlope_pVals = []
        sRare_MicSlope_Coeffs = []

        sRich_MicSlope_pVals = []
        sRich_MicSlope_Coeffs = []

        sDom_MicSlope_pVals = []
        sDom_MicSlope_Coeffs = []

        sEven_MicSlope_pVals = []
        sEven_MicSlope_Coeffs = []

        sRareR2List = []  # List to hold model R2
        sRarepFList = []  # List to hold significance of model R2
        sRichR2List = []  # List to hold model R2
        sRichpFList = []  # List to hold significance of model R2
        sDomR2List = []  # List to hold model R2
        sDompFList = []  # List to hold significance of model R2
        sEvenR2List = []  # List to hold model R2
        sEvenpFList = []  # List to hold significance of model R2

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #sRarepLinListHC = []
        sRarepLinListRainB = []
        sRarepLinListLM = []
        #sRichpLinListHC = []
        sRichpLinListRainB = []
        sRichpLinListLM = []
        #sDompLinListHC = []
        sDompLinListRainB = []
        sDompLinListLM = []
        #sEvenpLinListHC = []
        sEvenpLinListRainB = []
        sEvenpLinListLM = []

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        sRarepCorrListBG = []
        sRarepCorrListF = []
        sRichpCorrListBG = []
        sRichpCorrListF = []
        sDompCorrListBG = []
        sDompCorrListF = []
        sEvenpCorrListBG = []
        sEvenpCorrListF = []

        # 6. Homoscedacticity
        sRarepHomoHW = []
        sRarepHomoHB = []
        sRichpHomoHW = []
        sRichpHomoHB = []
        sDompHomoHW = []
        sDompHomoHB = []
        sEvenpHomoHW = []
        sEvenpHomoHB = []

        # 7. Normally distributed residuals (errors)
        sRarepNormListOmni = []  # Omnibus test for normality
        sRarepNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRarepNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRarepNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        sRichpNormListOmni = []  # Omnibus test for normality
        sRichpNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sRichpNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sRichpNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        sDompNormListOmni = []  # Omnibus test for normality
        sDompNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sDompNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sDompNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        sEvenpNormListOmni = []  # Omnibus test for normality
        sEvenpNormListJB = [
        ]  # Calculate residual skewness, kurtosis, and do the JB test for normality
        sEvenpNormListKS = [
        ]  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
        sEvenpNormListAD = [
        ]  # Anderson-Darling test for normal distribution unknown mean and variance

        for iteration in range(Iterations):

            Nlist, Slist, Evarlist, ESimplist, ENeelist, EHeiplist, EQlist = [
                [], [], [], [], [], [], []
            ]
            klist, Shanlist, BPlist, SimpDomlist, SinglesList, tenlist, onelist = [
                [], [], [], [], [], [], []
            ]
            NmaxList, rareSkews, KindList = [[], [], []]
            NSlist = []

            ct = 0
            radDATA = []
            datasets = []
            GoodNames = [
                'EMPclosed', 'HMP', 'BIGN', 'TARA', 'BOVINE', 'HUMAN', 'LAUB',
                'SED', 'CHU', 'CHINA', 'CATLIN', 'FUNGI', 'HYDRO', 'BBS',
                'CBC', 'MCDB', 'GENTRY', 'FIA'
            ]  # all microbe data is MGRAST

            mlist = ['micro', 'macro']
            for m in mlist:
                for name in os.listdir(mydir + 'data/' + m):
                    if name in GoodNames: pass
                    else: continue
                    path = mydir + 'data/' + m + '/' + name + '/' + name + '-SADMetricData.txt'
                    num_lines = sum(1 for line in open(path))
                    datasets.append([name, m, num_lines])

            numMac = 0
            numMic = 0

            radDATA = []

            for d in datasets:

                name, kind, numlines = d
                lines = []
                lines = np.random.choice(range(1, numlines + 1),
                                         SampSize,
                                         replace=True)

                path = mydir + 'data/' + kind + '/' + name + '/' + name + '-SADMetricData.txt'

                for line in lines:
                    data = linecache.getline(path, line)
                    radDATA.append(data)

                #print name, kind, numlines, len(radDATA)

            for data in radDATA:

                data = data.split()
                if len(data) == 0:
                    print 'no data'
                    continue

                name, kind, N, S, Var, Evar, ESimp, EQ, O, ENee, EPielou, EHeip, BP, SimpDom, Nmax, McN, skew, logskew, chao1, ace, jknife1, jknife2, margalef, menhinick, preston_a, preston_S = data

                N = float(N)
                S = float(S)

                Nlist.append(float(np.log(N)))
                Slist.append(float(np.log(S)))
                NSlist.append(float(np.log(N / S)))

                Evarlist.append(float(np.log(float(Evar))))
                ESimplist.append(float(np.log(float(ESimp))))
                KindList.append(kind)

                BPlist.append(float(BP))
                NmaxList.append(float(np.log(float(BP) * float(N))))
                EHeiplist.append(float(EHeip))

                # lines for the log-modulo transformation of skewnness
                skew = float(skew)
                sign = 1
                if skew < 0: sign = -1

                lms = np.log(np.abs(skew) + 1)
                lms = lms * sign
                #if lms > 3: print name, N, S
                rareSkews.append(float(lms))

                if kind == 'macro': numMac += 1
                elif kind == 'micro': numMic += 1

                ct += 1

            #print 'Sample Size:',SampSize, ' Mic:', numMic,'Mac:', numMac

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Rarity'] = list(rareSkews)
            d['Kind'] = list(KindList)

            RarityResults = smf.ols(
                'Rarity ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            # Multiple regression for Rarity
            d = pd.DataFrame({'N': list(Nlist)})
            d['Richness'] = list(Slist)
            d['Kind'] = list(KindList)

            RichnessResults = smf.ols(
                'Richness ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print RichnessResults.summary(), '\n'

            # Multiple regression for Dominance
            d = pd.DataFrame({'N': list(Nlist)})
            d['Dominance'] = list(NmaxList)
            d['Kind'] = list(KindList)

            DomResults = smf.ols(
                'Dominance ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print DomResults.summary(), '\n'

            # Multiple regression for Evenness
            d = pd.DataFrame({'N': list(Nlist)})
            d['Evenness'] = list(ESimplist)
            d['Kind'] = list(KindList)

            EvenResults = smf.ols(
                'Evenness ~ N * Kind',
                d).fit()  # Fit the dummy variable regression model
            #print RarityResults.summary(), '\n'

            RareResids = RarityResults.resid  # residuals of the model
            RichResids = RichnessResults.resid  # residuals of the model
            DomResids = DomResults.resid  # residuals of the model
            EvenResids = EvenResults.resid  # residuals of the model

            # MODEL RESULTS/FIT
            RareFpval = RarityResults.f_pvalue
            Rarer2 = RarityResults.rsquared  # coefficient of determination
            #Adj_r2 = RareResults.rsquared_adj # adjusted
            RichFpval = RichnessResults.f_pvalue
            Richr2 = RichnessResults.rsquared  # coefficient of determination
            #Adj_r2 = RichnessResults.rsquared_adj # adjusted

            DomFpval = DomResults.f_pvalue
            Domr2 = DomResults.rsquared  # coefficient of determination
            #Adj_r2 = DomResults.rsquared_adj # adjusted
            EvenFpval = EvenResults.f_pvalue
            Evenr2 = EvenResults.rsquared  # coefficient of determination
            #Adj_r2 = EvenResuls.rsquared_adj # adjusted

            # MODEL PARAMETERS and p-values
            Rareparams = RarityResults.params
            Rareparams = Rareparams.tolist()
            Rarepvals = RarityResults.pvalues
            Rarepvals = Rarepvals.tolist()

            Richparams = RichnessResults.params
            Richparams = Richparams.tolist()
            Richpvals = RichnessResults.pvalues
            Richpvals = Richpvals.tolist()

            Domparams = DomResults.params
            Domparams = Domparams.tolist()
            Dompvals = DomResults.pvalues
            Dompvals = Dompvals.tolist()

            Evenparams = EvenResults.params
            Evenparams = Evenparams.tolist()
            Evenpvals = EvenResults.pvalues
            Evenpvals = Evenpvals.tolist()

            sRare_MacIntercept_pVals.append(Rarepvals[0])
            sRare_MacIntercept_Coeffs.append(Rareparams[0])

            sRich_MacIntercept_pVals.append(Rarepvals[0])
            sRich_MacIntercept_Coeffs.append(Rareparams[0])

            sDom_MacIntercept_pVals.append(Dompvals[0])
            sDom_MacIntercept_Coeffs.append(Domparams[0])

            sEven_MacIntercept_pVals.append(Evenpvals[0])
            sEven_MacIntercept_Coeffs.append(Evenparams[0])

            sRare_MicIntercept_pVals.append(Rarepvals[1])
            if Rarepvals[1] > 0.05:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])
            else:
                sRare_MicIntercept_Coeffs.append(Rareparams[1])

            sRich_MicIntercept_pVals.append(Richpvals[1])
            if Richpvals[1] > 0.05:
                sRich_MicIntercept_Coeffs.append(Richparams[1])
            else:
                sRich_MicIntercept_Coeffs.append(Richparams[1])

            sDom_MicIntercept_pVals.append(Dompvals[1])
            if Dompvals[1] > 0.05:
                sDom_MicIntercept_Coeffs.append(Domparams[1])
            else:
                sDom_MicIntercept_Coeffs.append(Domparams[1])

            sEven_MicIntercept_pVals.append(Evenpvals[1])
            if Evenpvals[1] > 0.05:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])
            else:
                sEven_MicIntercept_Coeffs.append(Evenparams[1])

            sRare_MacSlope_pVals.append(Rarepvals[2])
            sRare_MacSlope_Coeffs.append(Rareparams[2])

            sRich_MacSlope_pVals.append(Richpvals[2])
            sRich_MacSlope_Coeffs.append(Richparams[2])

            sDom_MacSlope_pVals.append(Dompvals[2])
            sDom_MacSlope_Coeffs.append(Domparams[2])

            sEven_MacSlope_pVals.append(Evenpvals[2])
            sEven_MacSlope_Coeffs.append(Evenparams[2])

            sRare_MicSlope_pVals.append(Rarepvals[3])
            if Rarepvals[3] > 0.05:
                sRare_MicSlope_Coeffs.append(Rareparams[3])
            else:
                sRare_MicSlope_Coeffs.append(Rareparams[3])

            sRich_MicSlope_pVals.append(Richpvals[3])
            if Richpvals[3] > 0.05:
                sRich_MicSlope_Coeffs.append(Richparams[3])
            else:
                sRich_MicSlope_Coeffs.append(Richparams[3])

            sDom_MicSlope_pVals.append(Dompvals[3])
            if Dompvals[3] > 0.05:
                sDom_MicSlope_Coeffs.append(Domparams[3])
            else:
                sDom_MicSlope_Coeffs.append(Domparams[3])

            sEven_MicSlope_pVals.append(Evenpvals[3])
            if Evenpvals[3] > 0.05:
                sEven_MicSlope_Coeffs.append(Evenparams[3])
            else:
                sEven_MicSlope_Coeffs.append(Evenparams[3])

            sRareR2List.append(Rarer2)
            sRarepFList.append(RareFpval)
            sRichR2List.append(Richr2)
            sRichpFList.append(RichFpval)
            sDomR2List.append(Domr2)
            sDompFList.append(DomFpval)
            sEvenR2List.append(Evenr2)
            sEvenpFList.append(EvenFpval)

            # TESTS OF LINEAR REGRESSION ASSUMPTIONS
            # Error in predictor variables is negligible...Presumably Yes
            # Variables are measured at the continuous level...Definitely Yes

            # TESTS FOR LINEARITY, i.e., WHETHER THE DATA ARE CORRECTLY MODELED AS LINEAR
            #HC = smd.linear_harvey_collier(RarityResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sRarepLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(DomResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sDompLinListHC.append(HC)
            #HC = smd.linear_harvey_collier(EvenResults) # Harvey Collier test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            #sEvenpLinListHC.append(HC)

            RB = smd.linear_rainbow(
                RarityResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRarepLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(
                RichnessResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sRichpLinListRainB.append(RB[1])

            RB = smd.linear_rainbow(
                DomResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sDompLinListRainB.append(RB[1])
            RB = smd.linear_rainbow(
                EvenResults
            )  # Rainbow test for linearity. The Null hypothesis is that the regression is correctly modeled as linear.
            sEvenpLinListRainB.append(RB[1])

            LM = smd.linear_lm(RarityResults.resid, RarityResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sRarepLinListLM.append(LM[1])
            LM = smd.linear_lm(RichnessResults.resid,
                               RichnessResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sRichpLinListLM.append(LM[1])

            LM = smd.linear_lm(DomResults.resid, DomResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sDompLinListLM.append(LM[1])
            LM = smd.linear_lm(EvenResults.resid, EvenResults.model.exog
                               )  # Lagrangian multiplier test for linearity
            sEvenpLinListLM.append(LM[1])

            # INDEPENDENCE OF OBSERVATIONS (no serial correlation in residuals)
            BGtest = smd.acorr_breush_godfrey(
                RarityResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RareResids, lags=None, boxpierce=True)
            sRarepCorrListBG.append(BGtest[1])
            sRarepCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(
                RichnessResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(RichResids, lags=None, boxpierce=True)
            sRichpCorrListBG.append(BGtest[1])
            sRichpCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(
                DomResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(DomResids, lags=None, boxpierce=True)
            sDompCorrListBG.append(BGtest[1])
            sDompCorrListF.append(BGtest[3])

            BGtest = smd.acorr_breush_godfrey(
                EvenResults, nlags=None, store=False
            )  # Breusch Godfrey Lagrange Multiplier tests for residual autocorrelation
            # Lagrange multiplier test statistic, p-value for Lagrange multiplier test, fstatistic for F test, pvalue for F test
            #BGtest = smd.acorr_ljungbox(EvenResids, lags=None, boxpierce=True)
            sEvenpCorrListBG.append(BGtest[1])
            sEvenpCorrListF.append(BGtest[3])

            # There are no significant outliers...Need tests or measures/metrics

            # HOMOSCEDASTICITY

            # These tests return:
            # 1. lagrange multiplier statistic,
            # 2. p-value of lagrange multiplier test,
            # 3. f-statistic of the hypothesis that the error variance does not depend on x,
            # 4. p-value for the f-statistic

            HW = sms.het_white(RareResids, RarityResults.model.exog)
            sRarepHomoHW.append(HW[3])
            HW = sms.het_white(RichResids, RichnessResults.model.exog)
            sRichpHomoHW.append(HW[3])

            HW = sms.het_white(DomResids, DomResults.model.exog)
            sDompHomoHW.append(HW[3])
            HW = sms.het_white(EvenResids, EvenResults.model.exog)
            sEvenpHomoHW.append(HW[3])

            HB = sms.het_breushpagan(RareResids, RarityResults.model.exog)
            sRarepHomoHB.append(HB[3])
            HB = sms.het_breushpagan(RichResids, RichnessResults.model.exog)
            sRichpHomoHB.append(HB[3])

            HB = sms.het_breushpagan(DomResids, DomResults.model.exog)
            sDompHomoHB.append(HB[3])
            HB = sms.het_breushpagan(EvenResids, EvenResults.model.exog)
            sEvenpHomoHB.append(HB[3])

            # 7. NORMALITY OF ERROR TERMS
            O = sms.omni_normtest(RareResids)
            sRarepNormListOmni.append(O[1])
            O = sms.omni_normtest(RichResids)
            sRichpNormListOmni.append(O[1])
            O = sms.omni_normtest(DomResids)
            sDompNormListOmni.append(O[1])
            O = sms.omni_normtest(EvenResids)
            sEvenpNormListOmni.append(O[1])

            JB = sms.jarque_bera(RareResids)
            sRarepNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(RichResids)
            sRichpNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(DomResids)
            sDompNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality
            JB = sms.jarque_bera(EvenResids)
            sEvenpNormListJB.append(
                JB[1]
            )  # Calculate residual skewness, kurtosis, and do the JB test for normality

            KS = smd.kstest_normal(RareResids)
            sRarepNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(RichResids)
            sRichpNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(DomResids)
            sDompNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance
            KS = smd.kstest_normal(EvenResids)
            sEvenpNormListKS.append(
                KS[1]
            )  # Lillifors test for normality, Kolmogorov Smirnov test with estimated mean and variance

            AD = smd.normal_ad(RareResids)
            sRarepNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(RichResids)
            sRichpNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(DomResids)
            sDompNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance
            AD = smd.normal_ad(EvenResids)
            sEvenpNormListAD.append(
                AD[1]
            )  # Anderson-Darling test for normal distribution unknown mean and variance

            print 'Sample size:', SampSize, 'iteration:', iteration

        NLIST.append(SampSize)

        Rare_MacIntercept_pVals.append(np.mean(
            sRare_MacIntercept_pVals))  # List to hold coefficient p-values
        Rare_MacIntercept_Coeffs.append(
            np.mean(sRare_MacIntercept_Coeffs))  # List to hold coefficients

        Rich_MacIntercept_pVals.append(np.mean(
            sRich_MacIntercept_pVals))  # List to hold coefficient p-values
        Rich_MacIntercept_Coeffs.append(
            np.mean(sRich_MacIntercept_Coeffs))  # List to hold coefficients

        Dom_MacIntercept_pVals.append(np.mean(sDom_MacIntercept_pVals))
        Dom_MacIntercept_Coeffs.append(np.mean(sDom_MacIntercept_Coeffs))

        Even_MacIntercept_pVals.append(np.mean(sEven_MacIntercept_pVals))
        Even_MacIntercept_Coeffs.append(np.mean(sEven_MacIntercept_Coeffs))

        Rare_MicIntercept_pVals.append(np.mean(sRare_MicIntercept_pVals))
        Rare_MicIntercept_Coeffs.append(np.mean(sRare_MicIntercept_Coeffs))

        Rich_MicIntercept_pVals.append(np.mean(sRich_MicIntercept_pVals))
        Rich_MicIntercept_Coeffs.append(np.mean(sRich_MicIntercept_Coeffs))

        Dom_MicIntercept_pVals.append(np.mean(sDom_MicIntercept_pVals))
        Dom_MicIntercept_Coeffs.append(np.mean(sDom_MicIntercept_Coeffs))

        Even_MicIntercept_pVals.append(np.mean(sEven_MicIntercept_pVals))
        Even_MicIntercept_Coeffs.append(np.mean(sEven_MicIntercept_Coeffs))

        Rare_MacSlope_pVals.append(
            np.mean(sRare_MacSlope_pVals))  # List to hold coefficient p-values
        Rare_MacSlope_Coeffs.append(
            np.mean(sRare_MacSlope_Coeffs))  # List to hold coefficients

        Rich_MacSlope_pVals.append(
            np.mean(sRich_MacSlope_pVals))  # List to hold coefficient p-values
        Rich_MacSlope_Coeffs.append(
            np.mean(sRich_MacSlope_Coeffs))  # List to hold coefficients

        Dom_MacSlope_pVals.append(np.mean(sDom_MacSlope_pVals))
        Dom_MacSlope_Coeffs.append(np.mean(sDom_MacSlope_Coeffs))

        Even_MacSlope_pVals.append(np.mean(sEven_MacSlope_pVals))
        Even_MacSlope_Coeffs.append(np.mean(sEven_MacSlope_Coeffs))

        Rare_MicSlope_pVals.append(np.mean(sRare_MicSlope_pVals))
        Rare_MicSlope_Coeffs.append(np.mean(sRare_MicSlope_Coeffs))

        Rich_MicSlope_pVals.append(np.mean(sRich_MicSlope_pVals))
        Rich_MicSlope_Coeffs.append(np.mean(sRich_MicSlope_Coeffs))

        Dom_MicSlope_pVals.append(np.mean(sDom_MicSlope_pVals))
        Dom_MicSlope_Coeffs.append(np.mean(sDom_MicSlope_Coeffs))

        Even_MicSlope_pVals.append(np.mean(sEven_MicSlope_pVals))
        Even_MicSlope_Coeffs.append(np.mean(sEven_MicSlope_Coeffs))

        RareR2List.append(np.mean(sRareR2List))
        RarepFList.append(np.mean(sRarepFList))
        RichR2List.append(np.mean(sRichR2List))
        RichpFList.append(np.mean(sRichpFList))
        DomR2List.append(np.mean(sDomR2List))
        DompFList.append(np.mean(sDompFList))
        EvenR2List.append(np.mean(sEvenR2List))
        EvenpFList.append(np.mean(sEvenpFList))

        # ASSUMPTIONS OF LINEAR REGRESSION
        # 1. Error in predictor variables is negligible...presumably yes
        # 2. Variables are measured at the continuous level...yes

        # 3. The relationship is linear
        #RarepLinListHC.append(np.mean(sRarepLinListHC))
        RarepLinListRainB.append(np.mean(sRarepLinListRainB))
        RarepLinListLM.append(np.mean(sRarepLinListLM))
        #RichpLinListHC.append(np.mean(sRichpLinListHC))
        RichpLinListRainB.append(np.mean(sRichpLinListRainB))
        RichpLinListLM.append(np.mean(sRichpLinListLM))
        #DompLinListHC.append(np.mean(sDompLinListHC))
        DompLinListRainB.append(np.mean(sDompLinListRainB))
        DompLinListLM.append(np.mean(sDompLinListLM))
        #EvenpLinListHC.append(np.mean(sEvenpLinListHC))
        EvenpLinListRainB.append(np.mean(sEvenpLinListRainB))
        EvenpLinListLM.append(np.mean(sEvenpLinListLM))

        # 4. There are no significant outliers...need to find tests or measures

        # 5. Independence of observations (no serial correlation in residuals)
        RarepCorrListBG.append(np.mean(sRarepCorrListBG))
        RarepCorrListF.append(np.mean(sRarepCorrListF))
        RichpCorrListBG.append(np.mean(sRichpCorrListBG))
        RichpCorrListF.append(np.mean(sRichpCorrListF))
        DompCorrListBG.append(np.mean(sDompCorrListBG))
        DompCorrListF.append(np.mean(sDompCorrListF))
        EvenpCorrListBG.append(np.mean(sEvenpCorrListBG))
        EvenpCorrListF.append(np.mean(sEvenpCorrListF))

        # 6. Homoscedacticity
        RarepHomoHW.append(np.mean(sRarepHomoHW))
        RarepHomoHB.append(np.mean(sRarepHomoHB))
        RichpHomoHB.append(np.mean(sRichpHomoHB))
        RichpHomoHW.append(np.mean(sRichpHomoHW))
        DompHomoHW.append(np.mean(sDompHomoHW))
        DompHomoHB.append(np.mean(sDompHomoHB))
        EvenpHomoHW.append(np.mean(sEvenpHomoHW))
        EvenpHomoHB.append(np.mean(sEvenpHomoHB))

        # 7. Normally distributed residuals (errors)
        RarepNormListOmni.append(np.mean(sRarepNormListOmni))
        RarepNormListJB.append(np.mean(sRarepNormListJB))
        RarepNormListKS.append(np.mean(sRarepNormListKS))
        RarepNormListAD.append(np.mean(sRarepNormListAD))

        RichpNormListOmni.append(np.mean(sRichpNormListOmni))
        RichpNormListJB.append(np.mean(sRichpNormListJB))
        RichpNormListKS.append(np.mean(sRichpNormListKS))
        RichpNormListAD.append(np.mean(sRichpNormListAD))

        DompNormListOmni.append(np.mean(sDompNormListOmni))
        DompNormListJB.append(np.mean(sDompNormListJB))
        DompNormListKS.append(np.mean(sDompNormListKS))
        DompNormListAD.append(np.mean(sDompNormListAD))

        EvenpNormListOmni.append(np.mean(sEvenpNormListOmni))
        EvenpNormListJB.append(np.mean(sEvenpNormListJB))
        EvenpNormListKS.append(np.mean(sEvenpNormListKS))
        EvenpNormListAD.append(np.mean(sEvenpNormListAD))

    fig.add_subplot(4, 3, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.ylim(0, 1)
    plt.xscale('log')
    # Rarity    R2 vs. Sample Size
    plt.plot(NLIST, RareR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.6, 'Rarity', rotation='vertical', fontsize=16)
    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 2)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    plt.ylim(0.0, 0.16)
    # Rarity    Coeffs vs. Sample Size
    plt.plot(NLIST, Rare_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rare_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RareIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 3)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.ylim(0.0, 0.6)
    plt.xscale('log')
    # Rarity    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RarepLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RarepLinListRainB,  c='m')
    plt.plot(NLIST, RarepLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RarepCorrListBG,  c='c')
    plt.plot(NLIST, RarepCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, RarepHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RarepHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, RarepNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RarepNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RarepNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RarepNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')

    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 4)
    plt.xscale('log')
    plt.ylim(0, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, DomR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.text(1.01, 0.82, 'Dominance', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 5)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Dominance     Coeffs vs. Sample Size
    plt.plot(NLIST, Dom_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Dom_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, DomIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')

    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 6)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    #plt.yscale('log')
    plt.ylim(0, 0.6)
    # Dominance     p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(DompLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, DompLinListRainB, c='m')
    plt.plot(NLIST, DompLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, DompCorrListBG, c='c')
    plt.plot(NLIST, DompCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, DompHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, DompHomoHB, c='r',ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, DompNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, DompNormListJB, c='Lime', ls='-')
    #plt.plot(NLIST, DompNormListKS, c='Lime', ls='--', lw=3)
    #plt.plot(NLIST, DompNormListAD, c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 7)
    plt.text(1.01, 0.7, 'Evenness', rotation='vertical', fontsize=16)
    plt.xscale('log')
    plt.ylim(0, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Evenness      R2 vs. Sample Size
    plt.plot(NLIST, EvenR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 8)
    plt.ylim(-0.25, 0.0)
    plt.xscale('log')
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Evenness      Coeffs vs. Sample Size
    plt.plot(NLIST, Even_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Even_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, EvenIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 9)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    plt.ylim(0.0, 0.3)
    # Evenness      p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(EvenpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST, EvenpLinListRainB, c='m')
    plt.plot(NLIST, EvenpLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST, EvenpCorrListBG, c='c')
    plt.plot(NLIST, EvenpCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, EvenpHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST, EvenpHomoHB, c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, EvenpNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST, EvenpNormListJB, c='Lime', alpha=0.9, ls='-')
    #plt.plot(NLIST, EvenpNormListKS, c='Lime', alpha=0.9, ls='--', lw=3)
    #plt.plot(NLIST, EvenpNormListAD, c='Lime', alpha=0.9, ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 10)
    plt.xscale('log')
    plt.ylim(0, 1)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Dominance     R2 vs. Sample Size
    plt.plot(NLIST, RichR2List, c='0.2', ls='--', lw=2, label=r'$R^2$')
    plt.ylabel(r'$R^2$', fontsize=14)
    plt.xlabel('Sample size', fontsize=14)
    plt.text(1.01, 0.82, 'Richness', rotation='vertical', fontsize=16)

    leg = plt.legend(loc=4, prop={'size': 14})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 11)
    plt.ylim(-0.2, 1.2)
    plt.xscale('log')
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    # Richness    Coeffs vs. Sample Size
    plt.plot(NLIST, Rich_MicSlope_Coeffs, c='r', lw=2, label='Microbe')
    plt.plot(NLIST, Rich_MacSlope_Coeffs, c='b', lw=2, label='Macrobe')
    #plt.plot(NLIST, RichIntCoeffList, c='g', label='Interaction')
    plt.ylabel('Coefficient')
    plt.xlabel('Sample size', fontsize=14)

    leg = plt.legend(loc=10, prop={'size': 8})
    leg.draw_frame(False)

    fig.add_subplot(4, 3, 12)
    plt.xlim(min(SampSizes) - 1, max(SampSizes) + 10)
    plt.xscale('log')
    # Richness    p-vals vs. Sample Size

    # 3. The relationship is linear
    #plt.plot(RichpLinListHC, NLIST, c='m', alpha=0.8)
    #plt.plot(NLIST,RichpLinListRainB,  c='m')
    plt.plot(NLIST, RichpLinListLM, c='m', ls='-', label='linearity')

    # 5. Independence of observations (no serial correlation in residuals)
    #plt.plot(NLIST,RichpCorrListBG,  c='c')
    plt.plot(NLIST, EvenpCorrListF, c='c', ls='-', label='autocorrelation')

    # 6. Homoscedacticity
    plt.plot(NLIST, RichpHomoHW, c='orange', ls='-', label='homoscedasticity')
    #plt.plot(NLIST,RichpHomoHB,  c='r', ls='-')

    # 7. Normally distributed residuals (errors)
    plt.plot(NLIST, RichpNormListOmni, c='Lime', ls='-', label='normality')
    #plt.plot(NLIST,RichpNormListJB,  c='Lime', ls='-')
    #plt.plot(NLIST,RichpNormListKS,  c='Lime', ls='--', lw=3)
    #plt.plot(NLIST,RichpNormListAD,  c='Lime', ls='--')

    plt.plot([1, 100], [0.05, 0.05], c='0.2', ls='--')
    plt.ylabel('p-value')
    plt.xlabel('Sample size', fontsize=14)
    leg = plt.legend(loc=1, prop={'size': 8})
    leg.draw_frame(False)
    #plt.tick_params(axis='both', which='major', labelsize=fs-3)
    plt.subplots_adjust(wspace=0.4, hspace=0.4)
    plt.savefig(mydir + 'figs/appendix/SampleSize/SampleSizeEffects.png',
                dpi=600,
                bbox_inches="tight")
    #plt.close()
    #plt.show()

    return
Пример #13
0
def get_rainbow(fsm):
    """
    Gives the rainbow statistic for a given model
    """
    rainbow_statistic, rainbow_p_value = linear_rainbow(fsm)
    return {'statistic': rainbow_statistic, 'p-value': rainbow_p_value}