Пример #1
0
    def compute(cls, observation, prediction):
        """Compute a t statistic and a p_value from an observation and a prediction."""

        value, p_val = st.ttest_rel(prediction, observation)
        power = pw.TTestPower().power(effect_size=value /
                                      len(observation)**0.5,
                                      nobs=len(observation),
                                      alpha=0.05)
        diffmean = numpy.mean(prediction) - numpy.mean(observation)
        return StudentsPairedTestScore(value,
                                       related_data={
                                           "dof": len(observation) - 1,
                                           "p_value": p_val,
                                           "power": power,
                                           "diffmean": diffmean
                                       })
Пример #2
0
chi2_pow_R = 0.675077657003721
print('chi2_pow', chi2_pow, chi2_pow - chi2_pow_R)

chi2_pow = smp.GofChisquarePower().power(0.01, 100, 4, 0.05)
chi2_pow_R = 0.0505845519208533
print('chi2_pow', chi2_pow, chi2_pow - chi2_pow_R)

chi2_pow = smp.GofChisquarePower().power(2, 100, 4, 0.05)
chi2_pow_R = 1
print('chi2_pow', chi2_pow, chi2_pow - chi2_pow_R)

chi2_pow = smp.GofChisquarePower().power(0.9, 100, 4, 0.05)
chi2_pow_R = 0.999999999919477
print('chi2_pow', chi2_pow, chi2_pow - chi2_pow_R, 'lower precision ?')

chi2_pow = smp.GofChisquarePower().power(0.8, 100, 4, 0.05)
chi2_pow_R = 0.999999968205591
print('chi2_pow', chi2_pow, chi2_pow - chi2_pow_R)


def cohen_es(*args, **kwds):
    print(
        "You better check what's a meaningful effect size for your question.")


#BUG: after fixing 2.sided option, 2 rejection areas
tt_pow = smp.TTestPower().power(effect_size=0.01, nobs=nobs, alpha=0.05)
tt_pow_R = 0.05089485285965
# value from> pwr.t.test(d=0.01,n=80,sig.level=0.05,type="one.sample",alternative="two.sided")
print('tt_pow', tt_pow, tt_pow - tt_pow_R)
Пример #3
0
def calculate_paired_ttest_php(es, n_per_group):

    power = smp.TTestPower().power(effect_size=es, alpha=0.05, nobs=n_per_group,
                                   df=2*n_per_group-1, alternative='two-sided')

    print("Power = {}".format(round(power, 3)))
Пример #4
0
    def compute(cls, observation, prediction):
        """Compute a t statistic and a p_value from an observation and a prediction."""

        p_mean = prediction['mean']
        p_std = prediction['std']
        p_n = prediction['n']
        p_var = p_std**2

        #2 samples t-test
        if isinstance(observation, dict):
            o_mean = observation['mean']
            o_std = observation['std']
            o_n = observation['n']
            o_var = o_std**2

            #If the 2 variances are too different, perform a Welch t-test
            if p_var / o_var > 2 or o_var / p_var > 2:
                value, p_val = st.ttest_ind_from_stats(p_mean,
                                                       p_std,
                                                       p_n,
                                                       o_mean,
                                                       o_std,
                                                       o_n,
                                                       equal_var=False)
                vnp = p_var / p_n
                vno = o_var / o_n
                #Welch-Satherwaite equation to compute the degrees of freedom
                dof = (vnp + vno)**2 / (vnp**2 / (p_n - 1) + vno**2 /
                                        (o_n - 1))
            #If the 2 variances are similar, perform a 2 sample independant Student t-test
            else:
                value, p_val = st.ttest_ind_from_stats(p_mean,
                                                       p_std,
                                                       p_n,
                                                       o_mean,
                                                       o_std,
                                                       o_n,
                                                       equal_var=True)
                dof = o_n + p_n - 2

            #Compute the statistical power of the test
            power = pw.TTestIndPower().power(effect_size=CohenDScore.compute(
                observation, prediction).score,
                                             nobs1=p_n,
                                             ratio=float(o_n) / p_n,
                                             alpha=0.05)

#1 sample t-test
        else:
            value, p_val = st.ttest_ind_from_stats(p_mean,
                                                   p_std,
                                                   p_n,
                                                   observation,
                                                   std2=0,
                                                   nobs2=2,
                                                   equal_var=False)
            #Compute the statistical power of the test
            power = pw.TTestPower().power(effect_size=CohenDScore.compute(
                {
                    "mean": observation,
                    "std": 0
                }, prediction).score,
                                          nobs=p_n,
                                          alpha=0.05)
            o_mean = observation
            dof = p_n - 1
        return StudentsTestScore(value,
                                 related_data={
                                     "dof": dof,
                                     "p_value": p_val,
                                     "power": power,
                                     "diffmean": p_mean - o_mean
                                 })