def forecast(data, train_hours, test_hours): # Train on the first 6 days to predict the 7th day train = data.iloc[25:train_hours] # Create the SES Model model = Holt(np.asarray(train['seasonally differenced']), damped=True) model._index = pd.to_datetime(train.index) # Fit the model, and forecast fit = model.fit() pred = fit.forecast(test_hours) data['holtDamped'] = 0 data['holtDamped'][25:] = list(fit.fittedvalues) + list(pred)
def forecast(data, train_hours, test_hours): # Split data into training and test data train = data.iloc[25:train_hours] # Create the Holt Model model = Holt(np.asarray(train['seasonally differenced'])) model._index = pd.to_datetime(train.index) # Fit the model, and forecast fit = model.fit() pred = fit.forecast(test_hours) data['holt'] = 0 data['holt'][25:] = list(fit.fittedvalues) + list(pred)