Пример #1
0
def test_smoothed_state_obs_weights_univariate_singular(singular, periods,
                                                        reset_randomstate):
    # Tests for the univariate case when the forecast error covariance matrix
    # is singular (so the multivariate approach cannot be used, and the use of
    # pinv in computing the weights becomes actually operative)
    endog = np.zeros((10, 2))
    endog[6, 0] = np.nan
    endog[7, :] = np.nan
    endog[8, 1] = np.nan
    mod = TVSS(endog)
    mod.ssm.initialize_known([1.2, 0.8], np.eye(2) * 0)
    if singular == 'both':
        mod['obs_cov', ..., :periods] = 0
    else:
        mod['obs_cov', 0, 1, :periods] = 0
        mod['obs_cov', 1, 0, :periods] = 0
        mod['obs_cov', singular, singular, :periods] = 0
    mod['state_cov', :, :, :periods] = 0
    mod.ssm.filter_univariate = True
    res = mod.smooth([])

    # Make sure we actually have singular covariance matrices in the periods
    # specified
    for i in range(periods):
        eigvals = np.linalg.eigvalsh(res.forecasts_error_cov[..., i])
        assert_equal(np.min(eigvals), 0)

    # Compute the desiried weights
    n = mod.nobs
    m = mod.k_states
    p = mod.k_endog

    desired = np.zeros((n, n, m, p)) * np.nan
    # Here we manually compute the weights by adjusting one observation at a
    # time
    for j in range(n):
        for i in range(p):
            if np.isnan(endog[j, i]):
                desired[:, j, :, i] = np.nan
            else:
                y = endog.copy()
                y[j, i] = 1.0
                tmp_mod = mod.clone(y)
                tmp_mod.ssm.initialize_known([1.2, 0.8], np.eye(2) * 0)
                tmp_mod.ssm.filter_univariate = True
                tmp_res = tmp_mod.smooth([])

                desired[:, j, :, i] = (tmp_res.smoothed_state.T
                                       - res.smoothed_state.T)

    actual, _, _ = tools.compute_smoothed_state_weights(res)

    assert_allclose(actual, desired, atol=1e-12)
Пример #2
0
def test_compute_t_compute_j(compute_j, compute_t, reset_randomstate):
    # Tests for the collapsed case
    endog = np.zeros((10, 6))
    endog[2, :] = np.nan
    endog[6, 0] = np.nan
    endog[7, :] = np.nan
    endog[8, 1] = np.nan
    mod = TVSS(endog)
    mod['obs_intercept'] = np.zeros((6, 1))
    mod.ssm.initialize_known([1.2, 0.8], np.eye(2))
    mod.ssm.filter_collapsed = True
    res = mod.smooth([])

    # Compute the desiried weights
    n = mod.nobs
    m = mod.k_states
    p = mod.k_endog

    desired = np.zeros((n, n, m, p)) * np.nan
    # Here we manually compute the weights by adjusting one observation at a
    # time
    for j in range(n):
        for i in range(p):
            if np.isnan(endog[j, i]):
                desired[:, j, :, i] = np.nan
            else:
                y = endog.copy()
                y[j, i] = 1.0
                tmp_mod = mod.clone(y)
                tmp_mod['obs_intercept'] = np.zeros((6, 1))
                tmp_mod.ssm.initialize_known([1.2, 0.8], np.eye(2))
                mod.ssm.filter_collapsed = True
                tmp_res = tmp_mod.smooth([])

                desired[:, j, :, i] = (tmp_res.smoothed_state.T
                                       - res.smoothed_state.T)

    actual, _, _ = tools.compute_smoothed_state_weights(
        res, compute_t=compute_t, compute_j=compute_j)

    compute_t = np.atleast_1d(compute_t)
    compute_j = np.atleast_1d(compute_j)
    for t in np.arange(10):
        if t not in compute_t:
            desired[t, :] = np.nan
    for j in np.arange(10):
        if j not in compute_j:
            desired[:, j] = np.nan

    assert_allclose(actual, desired, atol=1e-12)
Пример #3
0
def test_smoothed_state_obs_weights_collapsed(reset_randomstate):
    # Tests for the collapsed case
    endog = np.zeros((20, 6))
    endog[2, :] = np.nan
    endog[6, 0] = np.nan
    endog[7, :] = np.nan
    endog[8, 1] = np.nan
    mod = TVSS(endog)
    mod['obs_intercept'] = np.zeros((6, 1))
    mod.ssm.initialize_known([1.2, 0.8], np.eye(2))
    mod.ssm.filter_collapsed = True
    res = mod.smooth([])

    # Compute the desiried weights
    n = mod.nobs
    m = mod.k_states
    p = mod.k_endog

    desired = np.zeros((n, n, m, p)) * np.nan
    # Here we manually compute the weights by adjusting one observation at a
    # time
    for j in range(n):
        for i in range(p):
            if np.isnan(endog[j, i]):
                desired[:, j, :, i] = np.nan
            else:
                y = endog.copy()
                y[j, i] = 1.0
                tmp_mod = mod.clone(y)
                tmp_mod['obs_intercept'] = np.zeros((6, 1))
                tmp_mod.ssm.initialize_known([1.2, 0.8], np.eye(2))
                mod.ssm.filter_collapsed = True
                tmp_res = tmp_mod.smooth([])

                desired[:, j, :, i] = (tmp_res.smoothed_state.T
                                       - res.smoothed_state.T)

    desired_state_intercept_weights = np.zeros((n, n, m, m)) * np.nan
    # Here we manually compute the weights by adjusting one state intercept
    # at a time
    for j in range(n):
        for ell in range(m):
            tmp_mod = mod.clone(endog)
            tmp_mod['obs_intercept'] = np.zeros((6, 1))
            tmp_mod.ssm.initialize_known([1.2, 0.8], np.eye(2))
            mod.ssm.filter_collapsed = True

            if tmp_mod['state_intercept'].ndim == 1:
                si = tmp_mod['state_intercept']
                tmp_mod['state_intercept'] = np.zeros((mod.k_states, mod.nobs))
                tmp_mod['state_intercept', :, :] = si[:, None]
            tmp_mod['state_intercept', ell, j] += 1.0
            tmp_res = tmp_mod.ssm.smooth()

            desired_state_intercept_weights[:, j, :, ell] = (
                tmp_res.smoothed_state.T - res.smoothed_state.T)

    actual, actual_state_intercept_weights, _ = (
        tools.compute_smoothed_state_weights(res))

    assert_allclose(actual, desired, atol=1e-12)
    assert_allclose(actual_state_intercept_weights,
                    desired_state_intercept_weights, atol=1e-12)
Пример #4
0
def test_smoothed_state_obs_weights_TVSS(univariate, diffuse,
                                         reset_randomstate):
    endog = np.zeros((10, 3))
    # One simple way to introduce more diffuse periods is to have fully missing
    # observations at the beginning
    if diffuse == 4:
        endog[:3] = np.nan
    endog[6, 0] = np.nan
    endog[7, :] = np.nan
    endog[8, 1] = np.nan
    mod = TVSS(endog)

    prior_mean = np.array([1.2, 0.8])
    prior_cov = np.eye(2)
    if not diffuse:
        mod.ssm.initialize_known(prior_mean, prior_cov)
    if univariate:
        mod.ssm.filter_univariate = True
    res = mod.smooth([])

    # Compute the desiried weights
    n = mod.nobs
    m = mod.k_states
    p = mod.k_endog

    desired = np.zeros((n, n, m, p)) * np.nan
    # Here we manually compute the weights by adjusting one observation at a
    # time
    for j in range(n):
        for i in range(p):
            if np.isnan(endog[j, i]):
                desired[:, j, :, i] = np.nan
            else:
                y = endog.copy()
                y[j, i] = 1.0
                tmp_mod = mod.clone(y)
                if not diffuse:
                    tmp_mod.ssm.initialize_known(prior_mean, prior_cov)
                if univariate:
                    tmp_mod.ssm.filter_univariate = True
                tmp_res = tmp_mod.smooth([])

                desired[:, j, :, i] = (tmp_res.smoothed_state.T
                                       - res.smoothed_state.T)

    desired_state_intercept_weights = np.zeros((n, n, m, m)) * np.nan
    # Here we manually compute the weights by adjusting one state intercept
    # at a time
    for j in range(n):
        for ell in range(m):
            tmp_mod = mod.clone(endog)
            if not diffuse:
                tmp_mod.ssm.initialize_known(prior_mean, prior_cov)
            if univariate:
                tmp_mod.ssm.filter_univariate = True
            if tmp_mod['state_intercept'].ndim == 1:
                si = tmp_mod['state_intercept']
                tmp_mod['state_intercept'] = np.zeros((mod.k_states, mod.nobs))
                tmp_mod['state_intercept', :, :] = si[:, None]
            tmp_mod['state_intercept', ell, j] += 1.0
            tmp_res = tmp_mod.ssm.smooth()

            desired_state_intercept_weights[:, j, :, ell] = (
                tmp_res.smoothed_state.T - res.smoothed_state.T)

    desired_prior_weights = np.zeros((n, m, m)) * np.nan
    if not diffuse:
        for i in range(m):
            a = prior_mean.copy()
            a[i] += 1
            tmp_mod = mod.clone(endog)
            tmp_mod.ssm.initialize_known(a, prior_cov)
            tmp_res = tmp_mod.smooth([])

            desired_prior_weights[:, :, i] = (tmp_res.smoothed_state.T
                                              - res.smoothed_state.T)

    if not diffuse:
        mod.ssm.initialize_known(prior_mean, prior_cov)
    actual, actual_state_intercept_weights, actual_prior_weights = (
        tools.compute_smoothed_state_weights(res))

    d = res.nobs_diffuse
    assert_equal(d, diffuse)
    if diffuse:
        assert_allclose(actual[:d], np.nan, atol=1e-12)
        assert_allclose(actual[:, :d], np.nan, atol=1e-12)
        assert_allclose(actual_state_intercept_weights[:d], np.nan)
        assert_allclose(actual_state_intercept_weights[:, :d], np.nan)
        assert_allclose(actual_prior_weights, np.nan)
    else:
        # Test that the weights are the same
        assert_allclose(actual_prior_weights, desired_prior_weights,
                        atol=1e-12)

        # In the non-diffuse case, we can actually use the weights along with
        # the prior and observations to compute the smoothed state directly,
        # and then compare that to what was returned by the usual Kalman
        # smoothing routines
        # Note that TVSS sets the state intercept to zeros, so this does not
        # test that, although those weights are tested separately, see above
        # and below.
        contribution_prior = np.nansum(
            actual_prior_weights * prior_mean[None, None, :], axis=2)
        contribution_endog = np.nansum(
            actual * (endog - mod['obs_intercept'].T)[None, :, None, :],
            axis=(1, 3))
        computed_smoothed_state = contribution_prior + contribution_endog
        assert_allclose(computed_smoothed_state, res.smoothed_state.T)
    assert_allclose(actual[d:, d:], desired[d:, d:], atol=1e-12)
    assert_allclose(actual_state_intercept_weights[d:, d:],
                    desired_state_intercept_weights[d:, d:], atol=1e-12)