def count_aps(): """ Shows a result table with the number of action potentials (i.e events whose potential is above 0 mV) in selected traces. If no trace is selected, then the current trace is analyzed. Returns: False if document is not open. """ if not stf.check_doc(): print("Open file first") return False if len(stf.get_selected_indices()) == 0: sel_trace = [stf.get_trace_index()] else: sel_trace = stf.get_selected_indices() mytable = dict() for trace in sel_trace: tstart = 0 tend = stf.get_size_trace(trace) * stf.get_sampling_interval() threshold = 0 spikes = count_events(tstart, tend, threshold, True, trace, True) mytable["Trace %.3d" % trace] = spikes stf.show_table(mytable) return True
def count_aps(): """ Shows a result table with the number of action potentials (i.e events whose potential is above 0 mV) in selected traces. If no trace is selected, then the current trace is analyzed. Returns: False if document is not open. """ if not stf.check_doc(): print("Open file first") return False if len( stf.get_selected_indices() )==0: sel_trace = [ stf.get_trace_index()] else: sel_trace = stf.get_selected_indices() mytable = dict() for trace in sel_trace: tstart = 0 tend = stf.get_size_trace(trace)*stf.get_sampling_interval() threshold = 0 spikes = count_events(tstart, tend, threshold, True, trace, True) mytable["Trace %.3d" %trace] = spikes stf.show_table(mytable) return True
def plot_traces(plotwindow=None, ichannel=0, vchannel=1): """ Show traces in a figure Parameters ---------- plotwindow : (float, float), optional Plot window (in ms from beginning of trace) None for whole trace. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 1) ax_currents = stfio_plot.StandardAxis( fig, gs[:3, 0], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis( fig, gs[3:, 0], hasx=False, hasy=False, sharex=ax_currents) if plotwindow is not None: istart = int(plotwindow[0]/dt) istop = int(plotwindow[1]/dt) else: istart = 0 istop = None for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace()[istart:istop] ax_currents.plot(np.arange(len(trace))*dt, trace) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace()[istart:istop] ax_voltages.plot(np.arange(len(trace))*dt, trace) # Reset active channel stf.set_channel(ichannel) stfio_plot.plot_scalebars( ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars( ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1))
def resistance( base_start, base_end, peak_start, peak_end, amplitude): """Calculates the resistance from a series of voltage clamp traces. Keyword arguments: base_start -- Starting index (zero-based) of the baseline cursors. base_end -- End index (zero-based) of the baseline cursors. peak_start -- Starting index (zero-based) of the peak cursors. peak_end -- End index (zero-based) of the peak cursors. amplitude -- Amplitude of the voltage command. Returns: The resistance. """ if not stf.check_doc(): print('Couldn\'t find an open file; aborting now.') return 0 #A temporary array to calculate the average: array = np.empty( (stf.get_size_channel(), stf.get_size_trace()) ) for n in range( 0, stf.get_size_channel() ): # Add this trace to set: array[n] = stf.get_trace( n ) # calculate average and create a new section from it: stf.new_window( np.average(set, 0) ) # set peak cursors: # -1 means all points within peak window. if not stf.set_peak_mean(-1): return 0 if not stf.set_peak_start(peak_start): return 0 if not stf.set_peak_end(peak_end): return 0 # set base cursors: if not stf.set_base_start(base_start): return 0 if not stf.set_base_end(base_end): return 0 # measure everything: stf.measure() # calculate r_seal and return: return amplitude / (stf.get_peak()-stf.get_base())
def resistance(base_start, base_end, peak_start, peak_end, amplitude): """Calculates the resistance from a series of voltage clamp traces. Keyword arguments: base_start -- Starting index (zero-based) of the baseline cursors. base_end -- End index (zero-based) of the baseline cursors. peak_start -- Starting index (zero-based) of the peak cursors. peak_end -- End index (zero-based) of the peak cursors. amplitude -- Amplitude of the voltage command. Returns: The resistance. """ if not stf.check_doc(): print('Couldn\'t find an open file; aborting now.') return 0 #A temporary array to calculate the average: array = np.empty((stf.get_size_channel(), stf.get_size_trace())) for n in range(0, stf.get_size_channel()): # Add this trace to set: array[n] = stf.get_trace(n) # calculate average and create a new section from it: stf.new_window(np.average(set, 0)) # set peak cursors: # -1 means all points within peak window. if not stf.set_peak_mean(-1): return 0 if not stf.set_peak_start(peak_start): return 0 if not stf.set_peak_end(peak_end): return 0 # set base cursors: if not stf.set_base_start(base_start): return 0 if not stf.set_base_end(base_end): return 0 # measure everything: stf.measure() # calculate r_seal and return: return amplitude / (stf.get_peak() - stf.get_base())
def analyze_iv(pulses, trace_start=0, factor=1.0): """Creates an IV for the currently active channel. Keyword arguments: pulses -- Number of pulses for the IV. trace_start -- ZERO-BASED index of the first trace to be used for the IV. Note that this is one less than what is diplayed in the drop-down box. factor -- Multiply result with an optional factor, typically from some external scaling. Returns: True upon success, False otherwise. """ if (stf.check_doc() == False): print("Couldn\'t find an open file; aborting now.") return False if (pulses < 1): print("Number of pulses has to be greater or equal 1.") return False # create an empty array (will contain random numbers) channel = list() for m in range(pulses): # A temporary array to calculate the average: set = np.empty((int( (stf.get_size_channel() - m - 1 - trace_start) / pulses) + 1, stf.get_size_trace(trace_start + m))) n_set = 0 for n in range(trace_start + m, stf.get_size_channel(), pulses): # Add this trace to set: set[n_set, :] = stf.get_trace(n) n_set = n_set + 1 # calculate average and create a new section from it, multiply: channel.append(np.average(set, 0) * factor) stf.new_window_list(channel) return True
def glu_iv(pulses=13, subtract_base=True): """Calculates an iv from a repeated series of fast application and voltage pulses. Keyword arguments: pulses -- Number of pulses for the iv. subtract_base -- If True (default), baseline will be subtracted. Returns: True if successful. """ # Some ugly definitions for the time being # Cursors are in ms here. gFitEnd = 330.6 # fit end cursor is variable gFSelect = 0 # Monoexp gDictSize = stf.leastsq_param_size( gFSelect) + 2 # Parameters, chisqr, peak value gBaseStart = 220.5 # Start and end of the baseline before the control pulse, in ms gBaseEnd = 223.55 gPeakStart = 223.55 # Start and end of the peak cursors for the control pulse, in ms gPeakEnd = 253.55 if (gDictSize < 0): print('Couldn\'t retrieve function id=%d, aborting now.' % gFSelect) return False if (not (stf.check_doc())): print('Couldn\'t find an open file; aborting now.') return False # analyse iv, subtract baseline if requested: ivtools.analyze_iv(pulses) if (subtract_base == True): if (not (stf.set_base_start(gBaseStart, True))): return False if (not (stf.set_base_end(gBaseEnd, True))): return False stf.measure() stf.select_all() stf.subtract_base() # set cursors: if (not (stf.set_peak_start(gPeakStart, True))): return False if (not (stf.set_peak_end(gPeakEnd, True))): return False if (not (stf.set_base_start(gBaseStart, True))): return False if (not (stf.set_base_end(gBaseEnd, True))): return False if (not (stf.set_fit_end(gFitEnd, True))): return False if (not (stf.set_peak_mean(3))): return False if (not (stf.set_peak_direction("both"))): return False # A list for dictionary keys and values: dict_keys = [] dict_values = np.empty((gDictSize, stf.get_size_channel())) firstpass = True for n in range(0, stf.get_size_channel()): if (stf.set_trace(n) == False): print('Couldn\'t set a new trace; aborting now.') return False print('Analyzing trace %d of %d' % (n + 1, stf.get_size_channel())) # set the fit window cursors: if (not (stf.set_fit_start(stf.peak_index()))): return False # Least-squares fitting: p_dict = stf.leastsq(gFSelect) if (p_dict == 0): print('Couldn\'t perform a fit; aborting now.') return False # Create an empty list: tempdict_entry = [] row = 0 for k, v in p_dict.iteritems(): if (firstpass == True): dict_keys.append(k) dict_values[row][n] = v row = row + 1 if (firstpass): dict_keys.append("Peak amplitude") dict_values[row][n] = stf.get_peak() - stf.get_base() firstpass = False retDict = dict() # Create the dictionary for the table: entry = 0 for elem in dict_keys: retDict[elem] = dict_values[entry].tolist() entry = entry + 1 return stf.show_table_dictlist(retDict)
def plot_traces(plotwindow=None, ichannel=0, vchannel=1): """ Show traces in a figure Parameters ---------- plotwindow : (float, float), optional Plot window (in ms from beginning of trace) None for whole trace. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 1) ax_currents = stfio_plot.StandardAxis(fig, gs[:3, 0], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis(fig, gs[3:, 0], hasx=False, hasy=False, sharex=ax_currents) if plotwindow is not None: istart = int(plotwindow[0] / dt) istop = int(plotwindow[1] / dt) else: istart = 0 istop = None for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace()[istart:istop] ax_currents.plot(np.arange(len(trace)) * dt, trace) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace()[istart:istop] ax_voltages.plot(np.arange(len(trace)) * dt, trace) # Reset active channel stf.set_channel(ichannel) stfio_plot.plot_scalebars(ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars(ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1))
def iv(peakwindow=None, basewindow=None, pulsewindow=None, erev=None, peakmode="both", ichannel=0, vchannel=1, exclude=None): """ Compute and plot an IV curve for currents Parameters ---------- peakwindow : (float, float), optional Window for peak measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None basewindow : (float, float), optional Window for baseline measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None erev : float, optional End of v clamp pulse in ms or None to determine automatically. Default: None peakmode : string, optional Peak direction - one of "up", "down", "both" or "mean". Default: "up" ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 exclude : list of ints, optional List of trace indices to be excluded from the analysis. Default: None Returns ------- v_commands : numpy.ndarray Command voltages ipeaks : numpy.ndarray Peak currents gpeaks : numpy.ndarray Peak normalized conductances g_fit : numpy.ndarray Half-maximal voltage and slope of best-fit Boltzmann function """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() olddirection = stf.get_peak_direction() v_commands = [] ipeaks = [] if basewindow is not None: stf.base.cursor_time = basewindow fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis(fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis(fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): if exclude is not None: if ntrace in exclude: continue stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace)) * dt, trace) # Measure only downward peaks (inward currents) if peakmode is "mean": stf.set_peak_direction("up") stf.set_peak_mean(-1) else: stf.set_peak_direction(peakmode) # Set peak computation to single sampling point stf.set_peak_mean(1) if peakwindow is not None: stf.peak.cursor_time = peakwindow stf.measure() if basewindow is not None: ipeaks.append(stf.peak.value - stf.base.value) else: ipeaks.append(stf.peak.value) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace)) * dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars(ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars(ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1)) v_commands = np.array(v_commands) ipeaks = np.array(ipeaks) if erev is None: # Find first zero crossing in ipeaks: for npulse in range(ipeaks.shape[0] - 1): if np.sign(ipeaks[npulse]) != np.sign(ipeaks[npulse + 1]): # linear interpolation m1 = (ipeaks[npulse + 1] - ipeaks[npulse]) / ( v_commands[npulse + 1] - v_commands[npulse]) c1 = ipeaks[npulse] - m1 * v_commands[npulse] erev = -c1 / m1 break if erev is None: sys.stderr.write( "Could not determine reversal potential. Aborting now\n") return None # Reset peak computation to single sampling point stf.set_peak_mean(1) stf.set_peak_direction(olddirection) # Reset active channel stf.set_channel(ichannel) # Compute conductances: gpeaks, g_fit = gv(ipeaks, v_commands, erev) ax_ipeaks = plot_iv(ipeaks, v_commands, stf.get_yunits(channel=ichannel), stf.get_yunits(channel=1), fig, 222) ax_ipeaks.set_title("Peak current") ax_gpeaks = plot_gv(gpeaks, v_commands, stf.get_yunits(channel=vchannel), g_fit, fig, 224) ax_gpeaks.set_title("Peak conductance") stf.show_table_dictlist({ "Voltage ({0})".format(stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Peak current ({0})".format(stf.get_yunits(channel=ichannel)): ipeaks.tolist(), "Peak conductance (g/g_max)": gpeaks.tolist(), }) return v_commands, ipeaks, gpeaks, g_fit
def timeconstants(fitwindow, pulsewindow, ichannel=0, vchannel=1): """ Compute and plot decay time constants Parameters ---------- fitwindow : (float, float), optional Window for fitting time constant (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 Returns ------- v_commands : numpy.ndarray Command voltages taus : numpy.ndarray Time constants """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() v_commands = [] taus = [] fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis(fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis(fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace)) * dt, trace) if fitwindow is not None: stf.fit.cursor_time = fitwindow res = stf.leastsq(0, False) taus.append(res['Tau_0']) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace)) * dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars(ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=ichannel)) stfio_plot.plot_scalebars(ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=vchannel)) v_commands = np.array(v_commands) taus = np.array(taus) ax_taus = plot_iv(taus, v_commands, "ms", stf.get_yunits(channel=vchannel), fig, 122) # Reset peak computation to single sampling point stf.set_peak_mean(1) # Reset active channel stf.set_channel(ichannel) # Compute conductances: stf.show_table_dictlist({ "Voltage ({0})".format(stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Taus (ms)": taus.tolist(), }) return v_commands, taus
def glu_iv( pulses = 13, subtract_base=True ): """Calculates an iv from a repeated series of fast application and voltage pulses. Keyword arguments: pulses -- Number of pulses for the iv. subtract_base -- If True (default), baseline will be subtracted. Returns: True if successful. """ # Some ugly definitions for the time being # Cursors are in ms here. gFitEnd = 330.6 # fit end cursor is variable gFSelect = 0 # Monoexp gDictSize = stf.leastsq_param_size( gFSelect ) + 2 # Parameters, chisqr, peak value gBaseStart = 220.5 # Start and end of the baseline before the control pulse, in ms gBaseEnd = 223.55 gPeakStart = 223.55 # Start and end of the peak cursors for the control pulse, in ms gPeakEnd = 253.55 if ( gDictSize < 0 ): print('Couldn\'t retrieve function id=%d, aborting now.'%gFSelect) return False if ( not(stf.check_doc()) ): print('Couldn\'t find an open file; aborting now.') return False # analyse iv, subtract baseline if requested: ivtools.analyze_iv( pulses ) if ( subtract_base == True ): if ( not(stf.set_base_start( gBaseStart, True )) ): return False if ( not(stf.set_base_end( gBaseEnd, True )) ): return False stf.measure() stf.select_all() stf.subtract_base() # set cursors: if ( not(stf.set_peak_start( gPeakStart, True )) ): return False if ( not(stf.set_peak_end( gPeakEnd, True )) ): return False if ( not(stf.set_base_start( gBaseStart, True )) ): return False if ( not(stf.set_base_end( gBaseEnd, True )) ): return False if ( not(stf.set_fit_end( gFitEnd, True )) ): return False if ( not(stf.set_peak_mean( 3 )) ): return False if ( not(stf.set_peak_direction( "both" )) ): return False # A list for dictionary keys and values: dict_keys = [] dict_values = np.empty( (gDictSize, stf.get_size_channel()) ) firstpass = True for n in range( 0, stf.get_size_channel() ): if ( stf.set_trace( n ) == False ): print('Couldn\'t set a new trace; aborting now.') return False print('Analyzing trace %d of %d'%( n+1, stf.get_size_channel() ) ) # set the fit window cursors: if ( not(stf.set_fit_start( stf.peak_index() )) ): return False # Least-squares fitting: p_dict = stf.leastsq( gFSelect ) if ( p_dict == 0 ): print('Couldn\'t perform a fit; aborting now.') return False # Create an empty list: tempdict_entry = [] row = 0 for k, v in p_dict.iteritems(): if ( firstpass == True ): dict_keys.append( k ) dict_values[row][n] = v row = row+1 if ( firstpass ): dict_keys.append( "Peak amplitude" ) dict_values[row][n] = stf.get_peak()-stf.get_base() firstpass = False retDict = dict() # Create the dictionary for the table: entry = 0 for elem in dict_keys: retDict[ elem ] = dict_values[entry].tolist() entry = entry+1 return stf.show_table_dictlist( retDict )
def iv(peakwindow=None, basewindow=None, pulsewindow=None, erev=None, peakmode="both", ichannel=0, vchannel=1, exclude=None): """ Compute and plot an IV curve for currents Parameters ---------- peakwindow : (float, float), optional Window for peak measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None basewindow : (float, float), optional Window for baseline measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None erev : float, optional End of v clamp pulse in ms or None to determine automatically. Default: None peakmode : string, optional Peak direction - one of "up", "down", "both" or "mean". Default: "up" ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 exclude : list of ints, optional List of trace indices to be excluded from the analysis. Default: None Returns ------- v_commands : numpy.ndarray Command voltages ipeaks : numpy.ndarray Peak currents gpeaks : numpy.ndarray Peak normalized conductances g_fit : numpy.ndarray Half-maximal voltage and slope of best-fit Boltzmann function """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() olddirection = stf.get_peak_direction() v_commands = [] ipeaks = [] if basewindow is not None: stf.base.cursor_time = basewindow fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis( fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis( fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): if exclude is not None: if ntrace in exclude: continue stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace))*dt, trace) # Measure only downward peaks (inward currents) if peakmode is "mean": stf.set_peak_direction("up") stf.set_peak_mean(-1) else: stf.set_peak_direction(peakmode) # Set peak computation to single sampling point stf.set_peak_mean(1) if peakwindow is not None: stf.peak.cursor_time = peakwindow stf.measure() if basewindow is not None: ipeaks.append(stf.peak.value-stf.base.value) else: ipeaks.append(stf.peak.value) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace))*dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars( ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=0)) stfio_plot.plot_scalebars( ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=1)) v_commands = np.array(v_commands) ipeaks = np.array(ipeaks) if erev is None: # Find first zero crossing in ipeaks: for npulse in range(ipeaks.shape[0]-1): if np.sign(ipeaks[npulse]) != np.sign(ipeaks[npulse+1]): # linear interpolation m1 = (ipeaks[npulse+1]-ipeaks[npulse]) / ( v_commands[npulse+1]-v_commands[npulse]) c1 = ipeaks[npulse] - m1*v_commands[npulse] erev = -c1/m1 break if erev is None: sys.stderr.write( "Could not determine reversal potential. Aborting now\n") return None # Reset peak computation to single sampling point stf.set_peak_mean(1) stf.set_peak_direction(olddirection) # Reset active channel stf.set_channel(ichannel) # Compute conductances: gpeaks, g_fit = gv(ipeaks, v_commands, erev) ax_ipeaks = plot_iv( ipeaks, v_commands, stf.get_yunits(channel=ichannel), stf.get_yunits(channel=1), fig, 222) ax_ipeaks.set_title("Peak current") ax_gpeaks = plot_gv( gpeaks, v_commands, stf.get_yunits(channel=vchannel), g_fit, fig, 224) ax_gpeaks.set_title("Peak conductance") stf.show_table_dictlist({ "Voltage ({0})".format( stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Peak current ({0})".format( stf.get_yunits(channel=ichannel)): ipeaks.tolist(), "Peak conductance (g/g_max)": gpeaks.tolist(), }) return v_commands, ipeaks, gpeaks, g_fit
def timeconstants(fitwindow, pulsewindow, ichannel=0, vchannel=1): """ Compute and plot decay time constants Parameters ---------- fitwindow : (float, float), optional Window for fitting time constant (time in ms from beginning of sweep) None for current cursor settings. Default: None pulsewindow : (float, float), optional Window for voltage pulse measurement (time in ms from beginning of sweep) None for current cursor settings. Default: None ichannel : int, optional current channel number. Default: 0 vchannel : int, optional voltage channel number. Default: 1 Returns ------- v_commands : numpy.ndarray Command voltages taus : numpy.ndarray Time constants """ import stf if not stf.check_doc(): return None nchannels = stf.get_size_recording() if nchannels < 2: sys.stderr.write( "Function requires 2 channels (0: current; 1: voltage)\n") return dt = stf.get_sampling_interval() v_commands = [] taus = [] fig = stf.mpl_panel(figsize=(12, 8)).fig fig.clear() gs = gridspec.GridSpec(4, 8) ax_currents = stfio_plot.StandardAxis( fig, gs[:3, :4], hasx=False, hasy=False) ax_voltages = stfio_plot.StandardAxis( fig, gs[3:, :4], hasx=False, hasy=False, sharex=ax_currents) for ntrace in range(stf.get_size_channel()): stf.set_trace(ntrace) stf.set_channel(ichannel) trace = stf.get_trace() ax_currents.plot(np.arange(len(trace))*dt, trace) if fitwindow is not None: stf.fit.cursor_time = fitwindow res = stf.leastsq(0, False) taus.append(res['Tau_0']) # Measure pulse amplitude stf.set_channel(vchannel) trace = stf.get_trace() ax_voltages.plot(np.arange(len(trace))*dt, trace) stf.set_peak_direction("up") stf.set_peak_mean(-1) if pulsewindow is not None: stf.peak.cursor_time = pulsewindow stf.measure() v_commands.append(stf.peak.value) stfio_plot.plot_scalebars( ax_currents, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=ichannel)) stfio_plot.plot_scalebars( ax_voltages, xunits=stf.get_xunits(), yunits=stf.get_yunits(channel=vchannel)) v_commands = np.array(v_commands) taus = np.array(taus) ax_taus = plot_iv( taus, v_commands, "ms", stf.get_yunits(channel=vchannel), fig, 122) # Reset peak computation to single sampling point stf.set_peak_mean(1) # Reset active channel stf.set_channel(ichannel) # Compute conductances: stf.show_table_dictlist({ "Voltage ({0})".format( stf.get_yunits(channel=vchannel)): v_commands.tolist(), "Taus (ms)": taus.tolist(), }) return v_commands, taus