Пример #1
0
def makeData():

    index = 1
    
    # Ideal camera movies.
    #
    if True:
        for [bg, photons] in settings.photons:
            
            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            if settings.use_dh:
                psf_f = lambda s, x, y, i3 : psf.DHPSF(s, x, y, i3, 100.0, z_range = settings.spline_z_range)
            else:
                psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, 100.0, settings.zmn)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.tif", "grid_list.hdf5", settings.n_frames)

            index += 1
Пример #2
0
def makeData(cal_file="calib.npy", dither=False, verbosity=1):
    index = 1

    for [bg, photons] in settings.photons:

        wdir = "test_{0:02d}".format(index)
        print(wdir)
        if not os.path.exists(wdir):
            os.makedirs(wdir)

        bg_f = lambda s, x, y, i3: background.UniformBackground(
            s, x, y, i3, photons=bg)
        cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, cal_file)
        pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, photons)
        psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, settings.
                                                    pixel_size)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                dither=dither,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        sim.simulate(wdir + "/test.tif",
                     "grid_list.hdf5",
                     settings.n_frames,
                     verbosity=verbosity)

        index += 1

    makeDataCommon.makePeakFile(settings)
Пример #3
0
def makeDataPupilFnCMOS(settings, cal_file, dither):
    """
    Pupil function PSF, CMOS camera movies.
    """
    index = 1

    for [bg, photons] in settings.photons:

        wdir = "test_{0:02d}".format(index)
        print(wdir)
        if not os.path.exists(wdir):
            os.makedirs(wdir)

        bg_f = lambda s, x, y, i3: background.UniformBackground(
            s, x, y, i3, photons=bg)
        cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, cal_file)
        pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, photons)
        psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, settings.
                                                      pixel_size, settings.zmn)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                dither=dither,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        sim.simulate(wdir + "/test.tif", "grid_list.hdf5", settings.n_frames)

        index += 1

    makePeakFile(settings)
Пример #4
0
def makeData():

    index = 1

    # Ideal camera movies.
    #
    if True:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3: background.UniformBackground(
                s, x, y, i3, photons=bg)
            cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, settings.
                                                     camera_offset)
            pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(
                s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3: psf.PupilFunction(
                s, x, y, i3, settings.pixel_size, settings.zmn)

            sim = simulate.Simulate(background_factory=bg_f,
                                    camera_factory=cam_f,
                                    photophysics_factory=pp_f,
                                    psf_factory=psf_f,
                                    x_size=settings.x_size,
                                    y_size=settings.y_size)

            sim.simulate(wdir + "/test.dax", "grid_list.hdf5",
                         settings.n_frames)

            index += 1

    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations
                                                is not None):
        with saH5Py.SAH5Py("test_01/test_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)

        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(
                settings.peak_locations,
                numpy.transpose(
                    numpy.vstack((locs['x'], locs['y'], locs['height'],
                                  locs['background']))))
Пример #5
0
def test_simulate_1():
    """
    No photo-physics, simple PSF, ideal camera.
    """
    dax_name = storm_analysis.getPathOutputTest("test_sim1.dax")
    bin_name = storm_analysis.getData("test/data/test_sim.hdf5")

    sim = simulate.Simulate(background_factory = lambda settings, xs, ys, i3data : background.UniformBackground(settings, xs, ys, i3data),
                            camera_factory = lambda settings, xs, ys, i3data : camera.Ideal(settings, xs, ys, i3data, 100.0),
                            photophysics_factory = lambda settings, xs, ys, i3data : photophysics.AlwaysOn(settings, xs, ys, i3data, 1000.0),
                            psf_factory = lambda settings, xs, ys, i3data : psf.GaussianPSF(settings, xs, ys, i3data, 160.0),
                            x_size = 100, y_size = 75)

    sim.simulate(dax_name, bin_name, 5)
Пример #6
0
def createMovie():
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=bg)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, camera_offset)
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, signal)
    psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, pixel_size)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    sim.simulate("test.tif", "sim_locs.hdf5", n_frames)
Пример #7
0
def test_simulate_3():
    """
    No photo-physics, spline PSF, sCMOS camera.
    """
    dax_name = storm_analysis.getPathOutputTest("test_sim3.dax")
    bin_name = storm_analysis.getData("test/data/test_sim_olist.bin")
    cal_name = storm_analysis.getData("test/data/calib.npy")
    spline_name = storm_analysis.getData("test/data/test_spliner_psf.spline")

    sim = simulate.Simulate(lambda settings, xs, ys, i3data : background.UniformBackground(settings, xs, ys, i3data, photons = 20),
                            lambda settings, xs, ys, i3data : camera.SCMOS(settings, xs, ys, i3data, 100.0, cal_name),
                            lambda settings, xs, ys, i3data : photophysics.AlwaysOn(settings, xs, ys, i3data, 2000.0),
                            lambda settings, xs, ys, i3data : psf.Spline(settings, xs, ys, i3data, 160.0, spline_name))
                   
    sim.simulate(dax_name, bin_name, 5)
Пример #8
0
def test_simulate_3():
    """
    No photo-physics, spline PSF, sCMOS camera.
    """
    
    # Only test for Python3 due to pickle incompatibility issues.
    if (sys.version_info < (3, 0)):
        return
    
    dax_name = storm_analysis.getPathOutputTest("test_sim3.dax")
    bin_name = storm_analysis.getData("test/data/test_sim.hdf5")
    cal_name = storm_analysis.getData("test/data/calib.npy")
    spline_name = storm_analysis.getData("test/data/test_spliner_psf.spline")

    sim = simulate.Simulate(background_factory = lambda settings, xs, ys, i3data : background.UniformBackground(settings, xs, ys, i3data, photons = 20),
                            camera_factory = lambda settings, xs, ys, i3data : camera.SCMOS(settings, xs, ys, i3data, cal_name),
                            photophysics_factory = lambda settings, xs, ys, i3data : photophysics.AlwaysOn(settings, xs, ys, i3data, 2000.0),
                            psf_factory = lambda settings, xs, ys, i3data : psf.Spline(settings, xs, ys, i3data, 160.0, spline_name))
                   
    sim.simulate(dax_name, bin_name, 5)
Пример #9
0
def createMovie(n_frames):
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=bg)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, camera_offset)
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, signal)
    psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, pixel_size)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    sim.simulate("test.tif", "sim_locs.hdf5", n_frames)

    # Also create file to use for peak locations.
    with saH5Py.SAH5Py("test_ref.hdf5") as h5:
        locs = h5.getLocalizationsInFrame(0)

    saH5Py.saveLocalizations("peak_locs.hdf5", locs)
Пример #10
0
def createMovie(movie_name, use_dh=False):

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-z_range, z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offsets.txt", z_offset)

    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=bg)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, camera_offset)
    drift_f = lambda s, x, y, i3: drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, signal)
    if use_dh:
        psf_f = lambda s, x, y, i3: psf.DHPSF(s, x, y, i3, pixel_size)
    else:
        psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, pixel_size,
                                                      [[1.3, 2, 2]])

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    sim.simulate(movie_name, "spliner_measure_psf.hdf5", dz.size)
Пример #11
0
                        type=int,
                        required=True,
                        help="The length of the movie in frames.")
    parser.add_argument('--photons',
                        dest='photons',
                        type=float,
                        required=True,
                        help="The integral of a single emitter in photons.")

    args = parser.parse_args()

    sim = Simulate(
        lambda settings, xs, ys, h5data: background.UniformBackground(
            settings, xs, ys, h5data), lambda settings, xs, ys, h5data: camera.
        Ideal(settings, xs, ys, h5data, 100.0),
        lambda settings, xs, ys, h5data: photophysics.AlwaysOn(
            settings, xs, ys, h5data, args.photons),
        lambda settings, xs, ys, h5data: psf.GaussianPSF(
            settings, xs, ys, h5data, 160.0))

    sim.simulate(args.dax_file, args.hdf5, args.frames)

#
# The MIT License
#
# Copyright (c) 2016 Zhuang Lab, Harvard University
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
Пример #12
0
def measurePSF():
    
    # Create sparse random localizations for PSF measurement.
    #
    print("Creating random localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                     "--bin", "sparse_random.hdf5",
                     "--density", "0.0002",
                     "--margin", str(settings.margin),
                     "--sx", str(settings.x_size),
                     "--sy", str(settings.y_size)])

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call(["python", sim_path + "emitters_on_grid.py",
                     "--bin", "sparse_grid.hdf5",
                     "--nx", "8",
                     "--ny", "3",
                     "--spacing", "40"])

    # Create text files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("sparse_random.hdf5")
    [xf, yf] = iaUtilsC.removeNeighbors(locs["x"], locs["y"], 2.0 * ((settings.psf_size/2)+1))
    numpy.savetxt("sparse_random.txt", numpy.transpose(numpy.vstack((xf, yf))))
    
    locs = saH5Py.loadLocalizations("sparse_grid.hdf5")
    numpy.savetxt("sparse_grid.txt", numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.001, 0.010)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:,2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:,1] = dz
    numpy.savetxt("z_offset.txt", z_offset)
    
    z_offset[:,0] = 0
    numpy.savetxt("z_offset_none_valid.txt", z_offset)
    
    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = 10)
    cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, 100.)
    drift_f = lambda s, x, y, i3 : drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, 20000.0)
    psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, 100.0, settings.zmn)
    
    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            drift_factory = drift_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            x_size = settings.x_size,
                            y_size = settings.y_size)

    if True:
        sim.simulate("sparse_grid.dax", "sparse_grid.hdf5", dz.size)
        sim.simulate("sparse_random.dax", "sparse_random.hdf5", dz.size)

    # Measure the PSF using spliner/measure_psf_beads.py and multiplane/measure_psf.py
    #

    diff_detected = False

    # Grid.
    if True:
        print("Measuring PSF (beads).")
        spliner_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"
        subprocess.call(["python", spliner_path + "measure_psf_beads.py",
                         "--movie", "sparse_grid.dax",
                         "--zoffset", "z_offset.txt",
                         "--aoi_size", str(int(settings.psf_size/2)+1),
                         "--beads", "sparse_grid.txt",
                         "--psf", "sparse_grid_beads.psf",
                         "--zrange", str(settings.psf_z_range),
                         "--zstep", str(settings.psf_z_step)])

        print("Measuring PSF (HDF5, with zoffset).")
        subprocess.call(["python", spliner_path + "measure_psf.py",
                         "--movie", "sparse_grid.dax",
                         "--bin", "sparse_grid_ref.hdf5",
                         "--psf", "sparse_grid_hdf5_zo.psf",
                         "--zoffset", "z_offset.txt",
                         "--aoi_size", str(int(settings.psf_size/2)+1),
                         "--zrange", str(settings.psf_z_range),
                         "--zstep", str(settings.psf_z_step)])

        print("Measuring PSF (HDF5).")
        subprocess.call(["python", spliner_path + "measure_psf.py",
                         "--movie", "sparse_grid.dax",
                         "--bin", "sparse_grid_ref.hdf5",
                         "--psf", "sparse_grid_hdf5.psf",
                         "--zoffset", "",
                         "--aoi_size", str(int(settings.psf_size/2)+1),
                         "--zrange", str(settings.psf_z_range),
                         "--zstep", str(settings.psf_z_step)])

        multiplane_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/multi_plane/"
        print("Measure PSF (multiplane).")
        subprocess.call(["python", multiplane_path + "psf_zstack.py",
                         "--movie", "sparse_grid.dax",
                         "--bin", "sparse_grid.hdf5",
                         "--zstack", "sparse_grid_zstack",
                         "--aoi_size", str(int(settings.psf_size/2)+1)])

        subprocess.call(["python", multiplane_path + "measure_psf.py",
                         "--zstack", "sparse_grid_zstack.npy",
                         "--zoffsets", "z_offset.txt",
                         "--psf_name", "sparse_grid_hdf5_mp_zo.psf",
                         "--z_range", str(settings.psf_z_range),
                         "--z_step", str(settings.psf_z_step),
                         "--normalize", "True"])

        # Check that the PSFs are the same.
        psf_beads = numpy.load("sparse_grid_beads.psf")["psf"]
        psf_hdf5_zo = numpy.load("sparse_grid_hdf5_zo.psf")["psf"]
        psf_hdf5 = numpy.load("sparse_grid_hdf5.psf")["psf"]
        psf_hdf5_mp_zo = numpy.load("sparse_grid_hdf5_mp_zo.psf")["psf"]

        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5_zo)
        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5)

        # Here we are only checking they are close.
        if (settings.psf_size >= 20):
            diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5_mp_zo, atol = 0.17, rtol = 0.17)

    # Grid, no valid z offsets.
    if True:
        print("Measuring PSF (beads).")
        spliner_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"
        try:
            subprocess.check_output(["python", spliner_path + "measure_psf_beads.py",
                                     "--movie", "sparse_grid.dax",
                                     "--zoffset", "z_offset_none_valid.txt",
                                     "--aoi_size", str(int(settings.psf_size/2)+1),
                                     "--beads", "sparse_grid.txt",
                                     "--psf", "sparse_grid_beads.psf",
                                     "--zrange", str(settings.psf_z_range),
                                     "--zstep", str(settings.psf_z_step)])
        except subprocess.CalledProcessError:
            pass
        else:
            assert False, "spliner.measure_psf_beads did not fail!"

        print("Measuring PSF (HDF5, with zoffset).")
        try:
            subprocess.check_output(["python", spliner_path + "measure_psf.py",
                                     "--movie", "sparse_grid.dax",
                                     "--bin", "sparse_grid_ref.hdf5",
                                     "--psf", "sparse_grid_hdf5_zo.psf",
                                     "--zoffset", "z_offset_none_valid.txt",
                                     "--aoi_size", str(int(settings.psf_size/2)+1),
                                     "--zrange", str(settings.psf_z_range),
                                     "--zstep", str(settings.psf_z_step)])
        except subprocess.CalledProcessError:
            pass
        else:
            assert False, "spliner.measure_psf did not fail!"            

        multiplane_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/multi_plane/"
        print("Measure PSF (multiplane).")
        try:
            subprocess.check_output(["python", multiplane_path + "psf_zstack.py",
                                    "--movie", "sparse_grid.dax",
                                     "--bin", "sparse_grid.hdf5",
                                     "--zstack", "sparse_grid_zstack",
                                     "--aoi_size", str(int(settings.psf_size/2)+1)])

            subprocess.check_output(["python", multiplane_path + "measure_psf.py",
                                     "--zstack", "sparse_grid_zstack.npy",
                                     "--zoffsets", "z_offset_none_valid.txt",
                                     "--psf_name", "sparse_grid_hdf5_mp_zo.psf",
                                     "--z_range", str(settings.psf_z_range),
                                     "--z_step", str(settings.psf_z_step),
                                     "--normalize", "True"])
        except subprocess.CalledProcessError:
            pass
        else:
            assert False, "multiplane PSF measurement did not fail!"

    # Random.
    if True:
        print("Measuring PSF (beads).")
        spliner_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"
        subprocess.call(["python", spliner_path + "measure_psf_beads.py",
                         "--movie", "sparse_random.dax",
                         "--zoffset", "z_offset.txt",
                         "--aoi_size", str(int(settings.psf_size/2)+1),
                         "--beads", "sparse_random.txt",
                         "--psf", "sparse_random_beads.psf",
                         "--zrange", str(settings.psf_z_range),
                         "--zstep", str(settings.psf_z_step)])

        print("Measuring PSF (HDF5, with zoffset).")
        subprocess.call(["python", spliner_path + "measure_psf.py",
                         "--movie", "sparse_random.dax",
                         "--bin", "sparse_random_ref.hdf5",
                         "--psf", "sparse_random_hdf5_zo.psf",
                         "--zoffset", "z_offset.txt",
                         "--aoi_size", str(int(settings.psf_size/2)+1),
                         "--zrange", str(settings.psf_z_range),
                         "--zstep", str(settings.psf_z_step)])

        print("Measuring PSF (HDF5).")
        subprocess.call(["python", spliner_path + "measure_psf.py",
                         "--movie", "sparse_random.dax",
                         "--bin", "sparse_random_ref.hdf5",
                         "--psf", "sparse_random_hdf5.psf",
                         "--zoffset", "",
                         "--aoi_size", str(int(settings.psf_size/2)+1),
                         "--zrange", str(settings.psf_z_range),
                         "--zstep", str(settings.psf_z_step)])    

        psf_beads = numpy.load("sparse_random_beads.psf")["psf"]
        psf_hdf5_zo = numpy.load("sparse_random_hdf5_zo.psf")["psf"]
        psf_hdf5 = numpy.load("sparse_random_hdf5.psf")["psf"]

        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5_zo)
        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5)
    
    if diff_detected:
        print("Difference detected in PSF measurements!")
    else:
        print("No differences detected, all good.")

    if False:
        with tifffile.TiffWriter("psf_diff.tif") as tf:
            for i in range(psf_beads.shape[0]):
                tf.save((psf_beads[i,:,:] - psf_hdf5_zo[i,:,:]).astype(numpy.float32))
Пример #13
0
# Ideal camera movies.
#
if True:
    for [bg, photons] in settings.photons:

        wdir = "test_{0:02d}".format(index)
        print(wdir)
        if not os.path.exists(wdir):
            os.makedirs(wdir)

        bg_f = lambda s, x, y, i3: background.UniformBackground(
            s, x, y, i3, photons=bg)
        cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, settings.
                                                 camera_offset)
        pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, photons)
        if settings.use_dh:
            psf_f = lambda s, x, y, i3: psf.DHPSF(
                s, x, y, i3, 100.0, z_range=settings.spline_z_range)
        else:
            psf_f = lambda s, x, y, i3: psf.PupilFunction(
                s, x, y, i3, 100.0, settings.zmn)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
def makeSampleData():
    # Create sample bead data for PSF measurement.
    #

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("psf_locs.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    # Create localization files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("psf_locs.hdf5")

    for i, z_offset in enumerate(z_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        locs_temp = {
            "x": locs["x"].copy(),
            "y": locs["y"].copy(),
            "z": locs["z"].copy()
        }
        xi = locs_temp["x"]
        yi = locs_temp["y"]
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        locs_temp["x"] = xf
        locs_temp["y"] = yf
        locs_temp["z"][:] = z_offset

        saH5Py.saveLocalizations("c" + str(i + 1) + "_psf.hdf5", locs_temp)

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-spline_z_range, spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurements.
    #
    bg_f = lambda s, x, y, h5: background.UniformBackground(
        s, x, y, h5, photons=10)
    cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
    drift_f = lambda s, x, y, h5: drift.DriftFromFile(s, x, y, h5, "drift.txt")
    pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
    psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, pixel_size, [])

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    for i in range(len(z_planes)):
        sim.simulate("c" + str(i + 1) + "_zcal.dax",
                     "c" + str(i + 1) + "_psf.hdf5", dz.size)
Пример #15
0
def configure(psf_model, no_splines):
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(psf_model)
    params.toXMLFile("multiplane.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin", "grid_list.hdf5",
        "--nx",
        str(settings.nx), "--ny",
        str(settings.ny), "--spacing", "20", "--zrange",
        str(settings.test_z_range), "--zoffset",
        str(settings.test_z_offset)
    ])

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    subprocess.call([
        "python", sim_path + "emitters_uniform_random.py", "--bin",
        "random_list.hdf5", "--density", "1.0", "--margin",
        str(settings.margin), "--sx",
        str(settings.x_size), "--sy",
        str(settings.y_size), "--zrange",
        str(settings.test_z_range)
    ])

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin", "psf_list.hdf5",
        "--nx", "6", "--ny", "3", "--spacing", "40"
    ])

    # Create sCMOS camera calibration files.
    #
    numpy.save("calib.npy", [
        numpy.zeros(
            (settings.y_size, settings.x_size)) + settings.camera_offset,
        numpy.ones(
            (settings.y_size, settings.x_size)) * settings.camera_variance,
        numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain,
        numpy.ones((settings.y_size, settings.x_size)), 2
    ])

    # Create mapping file.
    with open("map.map", 'wb') as fp:
        pickle.dump(settings.mappings, fp)

    if no_splines:
        return

    multiplane_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/multi_plane/"

    # Create pupil functions for 'pupilfn'.
    if (psf_model == "pupilfn"):
        pupilfn_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/pupilfn/"
        print("Creating pupil functions.")
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", pupilfn_path + "make_pupil_fn.py", "--filename",
                "c" + str(i + 1) + "_pupilfn.pfn", "--size",
                str(settings.psf_size), "--pixel-size",
                str(settings.pixel_size), "--zmn",
                str(settings.pupil_fn), "--z-offset",
                str(-settings.z_planes[i])
            ])

    # Both 'spline' and 'psf_fft' need measured PSFs.
    else:

        # Create localization files for PSF measurement.
        #
        locs = saH5Py.loadLocalizations("psf_list.hdf5")

        for i, z_offset in enumerate(settings.z_planes):
            cx = settings.mappings["0_" + str(i) + "_x"]
            cy = settings.mappings["0_" + str(i) + "_y"]
            locs_temp = {
                "x": locs["x"].copy(),
                "y": locs["y"].copy(),
                "z": locs["z"].copy()
            }
            xi = locs_temp["x"]
            yi = locs_temp["y"]
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            locs_temp["x"] = xf
            locs_temp["y"] = yf
            locs_temp["z"][:] = z_offset

            saH5Py.saveLocalizations("c" + str(i + 1) + "_psf.hdf5", locs_temp)

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.spline_z_range,
                          settings.spline_z_range + 0.001, 0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(
            s, x, y, h5, settings.pixel_size, settings.pupil_fn)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(len(settings.z_planes)):
            sim.simulate("c" + str(i + 1) + "_zcal.dax",
                         "c" + str(i + 1) + "_psf.hdf5", dz.size)

        # Measure the PSF.
        #
        print("Measuring PSFs.")
        psf_fft_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/psf_fft/"
        spliner_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/spliner/"
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", multiplane_path + "psf_zstack.py", "--movie",
                "c" + str(i + 1) + "_zcal.dax", "--bin",
                "c" + str(i + 1) + "_psf.hdf5", "--zstack",
                "c" + str(i + 1) + "_zstack", "--scmos_cal", "calib.npy",
                "--aoi_size",
                str(int(settings.psf_size / 2) + 1)
            ])

    # Measure PSF and calculate spline for Spliner.
    #
    if (psf_model == "spline"):

        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf_normed.psf", "--z_range",
                    str(settings.spline_z_range), "--normalize", "True"
                ])

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf.psf", "--z_range",
                    str(settings.spline_z_range)
                ])

            norm_args = [
                "python", multiplane_path + "normalize_psfs.py", "--psfs",
                "c1_psf.psf"
            ]
            for i in range(len(settings.z_planes) - 1):
                norm_args.append("c" + str(i + 2) + "_psf.psf")
            subprocess.call(norm_args)

        # Measure the spline for Spliner.
        #
        print("Measuring Spline.")
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", spliner_path + "psf_to_spline.py", "--psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--spline",
                "c" + str(i + 1) + "_psf.spline", "--spline_size",
                str(settings.psf_size)
            ])

    # Measure PSF and downsample for PSF FFT.
    #
    elif (psf_model == "psf_fft"):

        # PSFs are independently normalized.
        #
        if settings.independent_heights:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf_normed.psf", "--z_range",
                    str(settings.psf_z_range), "--z_step",
                    str(settings.psf_z_step), "--normalize", "True"
                ])

        # PSFs are normalized to each other.
        #
        else:
            for i in range(len(settings.z_planes)):
                subprocess.call([
                    "python", multiplane_path + "measure_psf.py", "--zstack",
                    "c" + str(i + 1) + "_zstack.npy", "--zoffsets",
                    "z_offset.txt", "--psf_name",
                    "c" + str(i + 1) + "_psf.psf", "--z_range",
                    str(settings.psf_z_range), "--z_step",
                    str(settings.psf_z_step)
                ])

            norm_args = [
                "python", multiplane_path + "normalize_psfs.py", "--psfs",
                "c1_psf.psf"
            ]
            for i in range(len(settings.z_planes) - 1):
                norm_args.append("c" + str(i + 2) + "_psf.psf")
            subprocess.call(norm_args)

        # Downsample the PSF to 1x for PSF FFT.
        print("Downsampling PSF.")
        for i in range(len(settings.z_planes)):
            subprocess.call([
                "python", psf_fft_path + "downsample_psf.py", "--spliner_psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--psf",
                "c" + str(i + 1) + "_psf_fft.psf", "--pixel-size",
                str(settings.pixel_size)
            ])

    # Calculate Cramer-Rao weighting.
    #
    print("Calculating weights.")
    subprocess.call([
        "python", multiplane_path + "plane_weighting.py", "--background",
        str(settings.photons[0][0]), "--photons",
        str(settings.photons[0][1]), "--output", "weights.npy", "--xml",
        "multiplane.xml", "--no_plots"
    ])
Пример #16
0
def makeData(dither = False):
    index = 1

    # Gaussian PSF, uniform background.
    if True:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    dither = dither,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
            
            index += 1

    # Pupil Function PSF.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, settings.pixel_size, [])

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1        

    # Gaussian non-uniform background, always on.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.GaussianBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

    # Uniform background, STORM.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.SimpleSTORM(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "random_list.hdf5", settings.n_frames)
        
            index += 1
        
    # Gaussian non-uniform background, STORM.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.GaussianBackground(s, x, y, i3, photons = bg)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.SimpleSTORM(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "random_list.hdf5", settings.n_frames)
        
            index += 1        

    # Sloped non-uniform background, always on.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.SlopedBackground(s, x, y, i3, slope = 0.4, offset = 10)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    dither = True,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

    # Sine non-uniform background, always on.
    if False:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3 : background.SineBackground(s, x, y, i3, photons = bg, period = 45)
            cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, settings.camera_offset)
            pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory = bg_f,
                                    camera_factory = cam_f,
                                    photophysics_factory = pp_f,
                                    psf_factory = psf_f,
                                    dither = True,
                                    x_size = settings.x_size,
                                    y_size = settings.y_size)
    
            sim.simulate(wdir + "/test.dax", "grid_list.hdf5", settings.n_frames)
        
            index += 1

        
    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations is not None):
        with saH5Py.SAH5Py("test_01/test_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)
        
        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(settings.peak_locations,
                          numpy.transpose(numpy.vstack((locs['x'],
                                                        locs['y'],
                                                        locs['height'],
                                                        locs['background']))))
def makeSampleData(mappings=None):
    # Create sample bead data for mapping measurement.
    #

    # Create randomly located localizations file (for STORM movies).
    #
    print("Creating random localizations.")
    emittersUniformRandom.emittersUniformRandom("random.hdf5", density, margin,
                                                x_size, y_size, 0.0)

    # Create mapping, if not specified.
    #
    if mappings is None:
        mappings = {
            "0_0_x": numpy.array([0.0, 1.0, 0.0]),
            "0_0_y": numpy.array([0.0, 0.0, 1.0]),
            "0_1_x": numpy.array([2.0, 1.0, 0.0]),
            "0_1_y": numpy.array([5.0, 0.0, 1.0]),
            "1_0_x": numpy.array([-2.0, 1.0, 0.0]),
            "1_0_y": numpy.array([-5.0, 0.0, 1.0])
        }

    # Figure out number of planes in the mapping.
    #
    n_planes = 0
    for elt in mappings:
        [i, j] = map(int, elt.split("_")[:2])
        if (i > n_planes):
            n_planes = i

    n_planes += 1
    print(n_planes)

    # Create localization files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("random.hdf5")

    for i in range(n_planes):
        cx = mappings["0_" + str(i) + "_x"]
        cy = mappings["0_" + str(i) + "_y"]
        locs_temp = {
            "x": locs["x"].copy(),
            "y": locs["y"].copy(),
            "z": locs["z"].copy()
        }
        xi = locs_temp["x"]
        yi = locs_temp["y"]
        xf = cx[0] + cx[1] * xi + cx[2] * yi
        yf = cy[0] + cy[1] * xi + cy[2] * yi
        locs_temp["x"] = xf
        locs_temp["y"] = yf

        saH5Py.saveLocalizations("c" + str(i + 1) + "_map.hdf5", locs_temp)

    # Create simulated data for PSF measurements.
    #
    bg_f = lambda s, x, y, h5: background.UniformBackground(
        s, x, y, h5, photons=10)
    cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
    pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 10000.0)
    psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, pixel_size, [])

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=x_size,
                            y_size=y_size)

    for i in range(n_planes):
        sim.simulate("c" + str(i + 1) + "_map.dax",
                     "c" + str(i + 1) + "_map.hdf5", 2)
Пример #18
0
def configure():

    # Create PF for pupil function.
    #
    pupilfn_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/pupilfn/"
    print("Creating pupil function.")
    subprocess.call([
        "python", pupilfn_path + "make_pupil_fn.py", "--filename",
        "pupilfn.pfn", "--size",
        str(settings.spline_size), "--pixel-size",
        str(settings.pixel_size), "--zmn",
        str(settings.zmn), "--z-offset",
        str(settings.z_offset)
    ])

    # Create PSF using pupil functions directly.
    #
    if False:
        psf_fft_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/psf_fft/"
        print("Creating (theoritical) psf.")
        subprocess.call([
            "python", psf_fft_path + "make_psf_from_pf.py", "--filename",
            "psf_fft.psf", "--size",
            str(settings.spline_size), "--pixel-size",
            str(settings.pixel_size), "--zrange",
            str(settings.psf_fft_z_range), "--zstep",
            str(settings.psf_fft_z_step)
        ])

        exit()

    # Localizations on a sparse parse grid for PSF
    # measurement for Spliner and PSF FFT.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin",
        "sparse_list.hdf5", "--nx", "6", "--ny", "3", "--spacing", "40",
        "--zoffset",
        str(settings.z_offset)
    ])

    # Create beads.txt file for spline measurement.
    #
    with saH5Py.SAH5Py("sparse_list.hdf5") as h5:
        locs = h5.getLocalizations()
        numpy.savetxt("beads.txt",
                      numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-settings.spline_z_range,
                      settings.spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=10)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, 100.)
    drift_f = lambda s, x, y, i3: drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, 20000.0)
    psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0, settings.
                                                  zmn)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=settings.x_size,
                            y_size=settings.y_size)

    sim.simulate("psf.dax", "sparse_list.hdf5", dz.size)

    # Create spline for Spliner
    #

    # Measure the PSF for Spliner
    #
    print("Measuring PSF.")
    spliner_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/spliner/"
    subprocess.call([
        "python", spliner_path + "measure_psf_beads.py", "--movie", "psf.dax",
        "--zoffset", "z_offset.txt", "--aoi_size",
        str(int(settings.spline_size / 2) + 1), "--beads", "beads.txt",
        "--psf", "psf_spliner.psf"
    ])

    # Measure the Spline.
    #

    # This is slow, sometimes you don't want to do it.
    if True:
        print("Measuring Spline.")
        subprocess.call([
            "python", spliner_path + "psf_to_spline.py", "--psf",
            "psf_spliner.psf", "--spline", "psf.spline", "--spline_size",
            str(settings.spline_size)
        ])

    # Create measured PSF for PSF FFT.
    #

    # Measure the PSF using spliner/measure_psf_beads.py
    #
    print("Measuring PSF.")
    subprocess.call([
        "python", spliner_path + "measure_psf_beads.py", "--movie", "psf.dax",
        "--zoffset", "z_offset.txt", "--aoi_size",
        str(int(settings.spline_size / 2) + 1), "--beads", "beads.txt",
        "--psf", "psf_fft_2x.psf", "--zrange",
        str(settings.psf_fft_z_range), "--zstep",
        str(settings.psf_fft_z_step)
    ])

    # Downsample by 2x for use by PSF FFT.
    #
    psf_fft_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/psf_fft/"
    print("Creating downsampled psf.")
    subprocess.call([
        "python", psf_fft_path + "downsample_psf.py", "--spliner_psf",
        "psf_fft_2x.psf", "--psf", "psf_fft.psf", "--pixel-size",
        str(settings.pixel_size)
    ])
Пример #19
0
def configure(no_splines):

    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters()
    params.toXMLFile("fdecon.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    emittersOnGrid.emittersOnGrid("grid_list.hdf5", settings.nx, settings.ny,
                                  1.5, 20, settings.test_z_range,
                                  settings.test_z_offset)

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    emittersUniformRandom.emittersUniformRandom("random_list.hdf5", 1.0,
                                                settings.margin,
                                                settings.x_size,
                                                settings.y_size,
                                                settings.test_z_range)

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("sparse_list.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    if no_splines:
        return

    # Create beads.txt file for spline measurement.
    #
    with saH5Py.SAH5Py("sparse_list.hdf5") as h5:
        locs = h5.getLocalizations()
        numpy.savetxt("beads.txt",
                      numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-settings.spline_z_range,
                      settings.spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=10)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, 100.)
    drift_f = lambda s, x, y, i3: drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, 20000.0)

    if settings.use_dh:
        psf_f = lambda s, x, y, i3: psf.DHPSF(
            s, x, y, i3, 100.0, z_range=settings.spline_z_range)
    else:
        psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0,
                                                      settings.zmn)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=settings.x_size,
                            y_size=settings.y_size)

    sim.simulate("spline.dax", "sparse_list.hdf5", dz.size)

    # Measure the PSF.
    #
    print("Measuring PSF.")
    psf_name = "psf.psf"
    measurePSFBeads.measurePSFBeads("spline.dax",
                                    "z_offset.txt",
                                    "beads.txt",
                                    psf_name,
                                    aoi_size=int(settings.spline_size + 1),
                                    pixel_size=settings.pixel_size * 1.0e-3,
                                    z_range=settings.spline_z_range)

    # Measure the Spline.
    #
    if True:
        print("Measuring Spline.")
        psfToSpline.psfToSpline(psf_name, "psf.spline", settings.spline_size)
Пример #20
0
def makeData():
    index = 1

    # sCMOS calibration file.
    if settings.random_variance:
        variance = numpy.random.exponential(scale=settings.camera_variance,
                                            size=(settings.y_size,
                                                  settings.x_size))
        offset = settings.camera_offset + variance
        numpy.save("calib.npy", [
            offset, variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain, 1
        ])
    else:
        numpy.save("calib.npy", [
            numpy.zeros(
                (settings.y_size, settings.x_size)) + settings.camera_offset,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain, 1
        ])

    # sCMOS camera movies.
    #
    # For these simulations we expect (approximately) these results:
    #
    # Analysis Summary:
    # Total analysis time 10.64 seconds
    # Recall 0.93726
    # Noise 0.05972
    # XY Error (nm):
    # test_01	14.44	14.53
    # test_02	8.26	8.24
    #
    # XY Width Error, Mean difference with truth, Standard deviation (pixels):
    # test_01	0.029	0.116	0.029	0.116
    # test_02	0.017	0.105	0.017	0.105
    #
    if True:
        for [bg, photons] in settings.photons:

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3: background.UniformBackground(
                s, x, y, i3, photons=bg)
            cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, "calib.npy")
            pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(
                s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3: psf.GaussianPSF(
                s, x, y, i3, settings.pixel_size)

            sim = simulate.Simulate(background_factory=bg_f,
                                    camera_factory=cam_f,
                                    photophysics_factory=pp_f,
                                    psf_factory=psf_f,
                                    x_size=settings.x_size,
                                    y_size=settings.y_size)

            sim.simulate(wdir + "/test.tif", "grid_list.hdf5",
                         settings.n_frames)

            index += 1
Пример #21
0
def measurePSF():

    # Create sparse random localizations for PSF measurement.
    #
    print("Creating random localization.")
    emittersUniformRandom.emittersUniformRandom("sparse_random.hdf5", 0.0002,
                                                settings.margin,
                                                settings.x_size,
                                                settings.y_size, 0.0)

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("sparse_grid.hdf5", 8, 3, 1.5, 40, 0.0, 0.0)

    # Create text files for PSF measurement.
    #
    locs = saH5Py.loadLocalizations("sparse_random.hdf5")
    [xf, yf] = iaUtilsC.removeNeighbors(locs["x"], locs["y"],
                                        2.0 * ((settings.psf_size / 2) + 1))
    numpy.savetxt("sparse_random.txt", numpy.transpose(numpy.vstack((xf, yf))))

    locs = saH5Py.loadLocalizations("sparse_grid.hdf5")
    numpy.savetxt("sparse_grid.txt",
                  numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.001,
                      0.010)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    z_offset[:, 0] = 0
    numpy.savetxt("z_offset_none_valid.txt", z_offset)

    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=10)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, 100.)
    drift_f = lambda s, x, y, i3: drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, 20000.0)
    psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0, settings.
                                                  zmn)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=settings.x_size,
                            y_size=settings.y_size)

    if True:
        sim.simulate("sparse_grid.tif", "sparse_grid.hdf5", dz.size)
        sim.simulate("sparse_random.tif", "sparse_random.hdf5", dz.size)

    # Measure the PSF using spliner/measure_psf_beads.py and multiplane/measure_psf.py
    #

    diff_detected = False

    # Grid.
    if True:

        # Remove old results.
        for elt in [
                "sparse_grid_beads.psf", "sparse_grid_hdf5_zo.psf",
                "sparse_grid_hdf5.psf", "sparse_grid_hdf5_mp_zo.psf"
        ]:
            if os.path.exists(elt):
                os.remove(elt)

        print("Measuring PSF (beads).")
        measurePSFBeads.measurePSFBeads("sparse_grid.tif",
                                        "z_offset.txt",
                                        "sparse_grid.txt",
                                        "sparse_grid_beads.psf",
                                        aoi_size=int(settings.psf_size / 2 +
                                                     1),
                                        z_range=settings.psf_z_range,
                                        z_step=settings.psf_z_step)

        print("Measuring PSF (HDF5, with zoffset).")
        spMeasurePSF.measurePSF("sparse_grid.tif",
                                "z_offset.txt",
                                "sparse_grid_ref.hdf5",
                                "sparse_grid_hdf5_zo.psf",
                                aoi_size=int(settings.psf_size / 2 + 1),
                                z_range=settings.psf_z_range,
                                z_step=settings.psf_z_step)

        print("Measuring PSF (HDF5).")
        spMeasurePSF.measurePSF("sparse_grid.tif",
                                "",
                                "sparse_grid_ref.hdf5",
                                "sparse_grid_hdf5.psf",
                                aoi_size=int(settings.psf_size / 2 + 1),
                                z_range=settings.psf_z_range,
                                z_step=settings.psf_z_step)

        multiplane_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/multi_plane/"
        print("Measure PSF (multiplane).")
        psfZStack.psfZStack("sparse_grid.tif",
                            "sparse_grid.hdf5",
                            "sparse_grid_zstack",
                            aoi_size=int(settings.psf_size / 2 + 1))

        mpMeasurePSF.measurePSF("sparse_grid_zstack.npy",
                                "z_offset.txt",
                                "sparse_grid_hdf5_mp_zo.psf",
                                z_range=settings.psf_z_range,
                                z_step=settings.psf_z_step,
                                normalize=True)

        # Check that the PSFs are the same.
        psf_beads = numpy.load("sparse_grid_beads.psf",
                               allow_pickle=True)["psf"]
        psf_hdf5_zo = numpy.load("sparse_grid_hdf5_zo.psf",
                                 allow_pickle=True)["psf"]
        psf_hdf5 = numpy.load("sparse_grid_hdf5.psf", allow_pickle=True)["psf"]
        psf_hdf5_mp_zo = numpy.load("sparse_grid_hdf5_mp_zo.psf",
                                    allow_pickle=True)["psf"]

        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5_zo)
        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5)

        # Here we are only checking they are close.
        if (settings.psf_size >= 20):
            diff_detected = diff_detected or psfDiffCheck(
                psf_beads, psf_hdf5_mp_zo, atol=0.17, rtol=0.17)

    # Grid, no valid z offsets. These are supposed to fail.
    #
    if True:
        print("Measuring PSF (beads).")
        try:
            measurePSFBeads.measurePSFBeads(
                "sparse_grid.tif",
                "z_offset_none_valid.txt",
                "sparse_grid.txt",
                "sparse_grid_beads.psf",
                aoi_size=int(settings.psf_size / 2 + 1),
                z_range=settings.psf_z_range,
                z_step=settings.psf_z_step)
        except AssertionError:
            pass
        else:
            assert False, "spliner.measure_psf_beads did not fail!"

        print("Measuring PSF (HDF5, with zoffset).")
        try:
            spMeasurePSF.measurePSF("sparse_grid.tif",
                                    "z_offset_none_valid.txt",
                                    "sparse_grid_ref.hdf5",
                                    "sparse_grid_hdf5_zo.psf",
                                    aoi_size=int(settings.psf_size / 2 + 1),
                                    z_range=settings.psf_z_range,
                                    z_step=settings.psf_z_step)
        except AssertionError:
            pass
        else:
            assert False, "spliner.measure_psf did not fail!"

        print("Measure PSF (multiplane).")
        try:
            psfZStack.psfZStack("sparse_grid.tif",
                                "sparse_grid.hdf5",
                                "sparse_grid_zstack",
                                aoi_size=int(settings.psf_size / 2 + 1))

            mpMeasurePSF.measurePSF("sparse_grid_zstack.npy",
                                    "z_offset_none_valid.txt",
                                    "sparse_grid_hdf5_mp_zo.psf",
                                    z_range=settings.psf_z_range,
                                    z_step=settings.psf_z_step,
                                    normalize=True)
        except AssertionError:
            pass
        else:
            assert False, "multiplane PSF measurement did not fail!"

    # Random.
    if True:

        # Remove old results.
        for elt in [
                "sparse_random_beads.psf", "sparse_random_hdf5_zo.psf",
                "sparse_random_hdf5.psf"
        ]:
            if os.path.exists(elt):
                os.remove(elt)

        print("Measuring PSF (beads).")
        measurePSFBeads.measurePSFBeads("sparse_random.tif",
                                        "z_offset.txt",
                                        "sparse_random.txt",
                                        "sparse_random_beads.psf",
                                        aoi_size=int(settings.psf_size / 2 +
                                                     1),
                                        z_range=settings.psf_z_range,
                                        z_step=settings.psf_z_step)

        print("Measuring PSF (HDF5, with zoffset).")
        spMeasurePSF.measurePSF("sparse_random.tif",
                                "z_offset.txt",
                                "sparse_random_ref.hdf5",
                                "sparse_random_hdf5_zo.psf",
                                aoi_size=int(settings.psf_size / 2 + 1),
                                z_range=settings.psf_z_range,
                                z_step=settings.psf_z_step)

        print("Measuring PSF (HDF5).")
        spMeasurePSF.measurePSF("sparse_random.tif",
                                "",
                                "sparse_random_ref.hdf5",
                                "sparse_random_hdf5.psf",
                                aoi_size=int(settings.psf_size / 2 + 1),
                                z_range=settings.psf_z_range,
                                z_step=settings.psf_z_step)

        psf_beads = numpy.load("sparse_random_beads.psf",
                               allow_pickle=True)["psf"]
        psf_hdf5_zo = numpy.load("sparse_random_hdf5_zo.psf",
                                 allow_pickle=True)["psf"]
        psf_hdf5 = numpy.load("sparse_random_hdf5.psf",
                              allow_pickle=True)["psf"]

        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5_zo)
        diff_detected = diff_detected or psfDiffCheck(psf_beads, psf_hdf5)

    if diff_detected:
        print("Difference detected in PSF measurements!")
    else:
        print("No differences detected, all good.")

    if False:
        with tifffile.TiffWriter("psf_diff.tif") as tf:
            for i in range(psf_beads.shape[0]):
                tf.save((psf_beads[i, :, :] - psf_hdf5_zo[i, :, :]).astype(
                    numpy.float32))
Пример #22
0
def configure(no_splines):

    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters()
    params.toXMLFile("fdecon.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin", "grid_list.hdf5",
        "--nx",
        str(settings.nx), "--ny",
        str(settings.ny), "--spacing", "20", "--zrange",
        str(settings.test_z_range), "--zoffset",
        str(settings.test_z_offset)
    ])

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    subprocess.call([
        "python", sim_path + "emitters_uniform_random.py", "--bin",
        "random_list.hdf5", "--density", "1.0", "--sx",
        str(settings.x_size), "--sy",
        str(settings.y_size), "--zrange",
        str(settings.test_z_range)
    ])

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin",
        "sparse_list.hdf5", "--nx", "6", "--ny", "3", "--spacing", "40"
    ])

    if no_splines:
        return

    # Create beads.txt file for spline measurement.
    #
    with saH5Py.SAH5Py("sparse_list.hdf5") as h5:
        locs = h5.getLocalizations()
        numpy.savetxt("beads.txt",
                      numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-settings.spline_z_range,
                      settings.spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=10)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, 100.)
    drift_f = lambda s, x, y, i3: drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, 20000.0)

    if settings.use_dh:
        psf_f = lambda s, x, y, i3: psf.DHPSF(
            s, x, y, i3, 100.0, z_range=settings.spline_z_range)
    else:
        psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0,
                                                      settings.zmn)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=settings.x_size,
                            y_size=settings.y_size)

    sim.simulate("spline.dax", "sparse_list.hdf5", dz.size)

    # Measure the PSF.
    #
    print("Measuring PSF.")
    spliner_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/spliner/"
    subprocess.call([
        "python", spliner_path + "measure_psf_beads.py", "--movie",
        "spline.dax", "--zoffset", "z_offset.txt", "--beads", "beads.txt",
        "--psf", "psf.psf"
    ])

    # Measure the Spline.
    #
    print("Measuring Spline.")
    subprocess.call([
        "python", spliner_path + "psf_to_spline.py", "--psf", "psf.psf",
        "--spline", "psf.spline", "--spline_size",
        str(settings.spline_size)
    ])
Пример #23
0
def makeData():
    index = 1

    if True:

        # Create .bin files for each plane.
        h5_locs = saH5Py.loadLocalizations("grid_list.hdf5")

        # Load channel to channel mapping file.
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i, z_plane in enumerate(settings.z_planes):
            cx = mappings["0_" + str(i) + "_x"]
            cy = mappings["0_" + str(i) + "_y"]
            xi = h5_locs["x"].copy()
            yi = h5_locs["y"].copy()
            zi = h5_locs["z"].copy()
            xf = cx[0] + cx[1] * xi + cx[2] * yi
            yf = cy[0] + cy[1] * xi + cy[2] * yi
            zf = zi + z_plane
            h5_temp = {"x": xf, "y": yf, "z": zf}
            saH5Py.saveLocalizations("sim_input_c" + str(i + 1) + ".hdf5",
                                     h5_temp)

        # Create a movie for each plane.
        for [bg, photons] in settings.photons:

            # Adjust photons by the number of planes.
            photons = photons / float(len(settings.z_planes))

            wdir = "test_{0:02d}".format(index)
            print(wdir)
            if not os.path.exists(wdir):
                os.makedirs(wdir)

            bg_f = lambda s, x, y, i3: background.UniformBackground(
                s, x, y, i3, photons=bg)
            cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, "calib.npy")
            pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(
                s, x, y, i3, photons)
            psf_f = lambda s, x, y, i3: psf.PupilFunction(
                s, x, y, i3, settings.pixel_size, settings.pupil_fn)

            sim = simulate.Simulate(background_factory=bg_f,
                                    camera_factory=cam_f,
                                    photophysics_factory=pp_f,
                                    psf_factory=psf_f,
                                    x_size=settings.x_size,
                                    y_size=settings.y_size)

            for i in range(len(settings.z_planes)):
                sim.simulate(wdir + "/test_c" + str(i + 1) + ".dax",
                             "sim_input_c" + str(i + 1) + ".hdf5",
                             settings.n_frames)

            index += 1

    # Create "peak_locations" file if needed.
    #
    if hasattr(settings, "peak_locations") and (settings.peak_locations
                                                is not None):
        with saH5Py.SAH5Py("test_01/test_c1_ref.hdf5") as h5:
            locs = h5.getLocalizationsInFrame(0)

        if settings.peak_locations.endswith(".hdf5"):
            saH5Py.saveLocalizations(settings.peak_locations, locs)
        else:
            numpy.savetxt(
                settings.peak_locations,
                numpy.transpose(
                    numpy.vstack((locs['x'], locs['y'], locs['height'],
                                  locs['background']))))
Пример #24
0
def configure(cal_file = None):
    
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(cal_file = cal_file)
    params.toXMLFile("psf_fft.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    emittersOnGrid.emittersOnGrid("grid_list.hdf5",
                                  settings.nx,
                                  settings.ny,
                                  1.5,
                                  20,
                                  settings.test_z_range,
                                  settings.test_z_offset)

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    emittersUniformRandom.emittersUniformRandom("random_list.hdf5",
                                                1.0,
                                                settings.margin,
                                                settings.x_size,
                                                settings.y_size,
                                                settings.test_z_range)

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("sparse_list.hdf5",
                                  6,
                                  3,
                                  1.5,
                                  40,
                                  0.0,
                                  0.0)


    if False:
    
        # Create PSF using pupil functions directly.
        #
        print("Creating (theoritical) psf.")
        makePSFFromPF.makePSF("psf.psf",
                              settings.psf_size,
                              settings.pixel_size * 1.0e-3,
                              settings.zmn,
                              settings.psf_z_range,
                              settings.z_step)

    else:

        # Create beads.txt file for PSF measurement.
        #
        with saH5Py.SAH5Py("sparse_list.hdf5") as h5:
            locs = h5.getLocalizations()
            numpy.savetxt("beads.txt", numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.001, 0.010)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:,2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:,1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurement.
        #
        bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = 10)
        cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, 100.)
        drift_f = lambda s, x, y, i3 : drift.DriftFromFile(s, x, y, i3, "drift.txt")
        pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, 20000.0)
        psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, 100.0, settings.zmn)
    
        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                drift_factory = drift_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)
    
        sim.simulate("psf.dax", "sparse_list.hdf5", dz.size)

        # Measure the PSF using spliner/measure_psf_beads.py
        #
        print("Measuring PSF.")
        measurePSFBeads.measurePSFBeads("psf.dax",
                                        "z_offset.txt",
                                        "beads.txt",
                                        "psf.psf",
                                        aoi_size = int(settings.psf_size/2)+1,
                                        pixel_size = settings.pixel_size * 1.0e-3,
                                        z_range = settings.psf_z_range,
                                        z_step = settings.z_step)
Пример #25
0
    xf = cx[0] + cx[1] * xi + cx[2] * yi
    yf = cy[0] + cy[1] * xi + cy[2] * yi
    i3dtype.posSet(i3_temp, "x", xf)
    i3dtype.posSet(i3_temp, "y", yf)
    i3dtype.posSet(i3_temp, "z", z_plane + z_value)
    with writeinsight3.I3Writer("sim_input_c" + str(i) + ".bin") as i3w:
        i3w.addMolecules(i3_temp)

# Create simulator object.
bg_photons = int(100.0 / float(len(z_planes)))
signal = 6000.0 / float(len(z_planes))

bg_f = lambda s, x, y, i3: background.UniformBackground(
    s, x, y, i3, photons=bg_photons)
cam_f = lambda s, x, y, i3: camera.SCMOS(s, x, y, i3, 0.0, "cam_cal_c0.npy")
pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, signal)

if (len(z_planes) > 1):
    psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0, [])
else:
    psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0,
                                                  [[1.3, 2, 2]])

sim = simulate.Simulate(background_factory=bg_f,
                        camera_factory=cam_f,
                        photophysics_factory=pp_f,
                        psf_factory=psf_f,
                        x_size=x_size,
                        y_size=y_size)

for i in range(len(z_planes)):
Пример #26
0
def configure():
    # Get relevant paths.
    mm_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/micrometry/"
    mp_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/multi_plane/"
    sp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"

    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")

    # Useful variables
    aoi_size = int(settings.psf_size / 2) + 1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [
            numpy.zeros(
                (settings.y_size, settings.x_size)) + settings.camera_offset,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain, 1
        ])

        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        sim_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call([
            "python", sim_path + "emitters_on_grid.py", "--bin",
            "grid_list.hdf5", "--nx",
            str(settings.nx), "--ny",
            str(settings.ny), "--spacing", "20", "--zrange",
            str(settings.test_z_range), "--zoffset",
            str(settings.test_z_offset)
        ])

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        subprocess.call([
            "python", sim_path + "emitters_uniform_random.py", "--bin",
            "random_storm.hdf5", "--density", "1.0", "--margin",
            str(settings.margin), "--sx",
            str(settings.x_size), "--sy",
            str(settings.y_size), "--zrange",
            str(settings.test_z_range)
        ])

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        subprocess.call([
            "python", sim_path + "emitters_uniform_random.py", "--bin",
            "random_map.hdf5", "--density", "0.0003", "--margin",
            str(settings.margin), "--sx",
            str(settings.x_size), "--sy",
            str(settings.y_size)
        ])

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        sim_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call([
            "python", sim_path + "emitters_on_grid.py", "--bin",
            "psf_list.hdf5", "--nx", "6", "--ny", "3", "--spacing", "40"
        ])

    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make simulated mapping data.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, settings.
                                                    pixel_size)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i + 1) + "_map.dax",
                         "c" + str(i + 1) + "_random_map.hdf5", 1)

        # Analyze simulated mapping data
        #
        for i in range(4):
            scmos.analyze("c" + str(i + 1) + "_map.dax",
                          "c" + str(i + 1) + "_map.hdf5", "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            subprocess.call([
                "python", mm_path + "micrometry.py", "--locs1", "c1_map.hdf5",
                "--locs2", "c" + str(i + 2) + "_map.hdf5", "--results",
                "c1_c" + str(i + 2) + "_map.map", "--no_plots"
            ])

        # Merge mapping.
        #
        subprocess.call([
            "python", mm_path + "merge_maps.py", "--results", "map.map",
            "--maps", "c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"
        ])

        # Print mapping.
        #
        if True:
            print("Mapping is:")
            subprocess.call([
                "python", mp_path + "print_mapping.py", "--mapping", "map.map"
            ])
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_x"],
                                  numpy.array(
                                      [settings.dx * (i + 1), 1.0, 0.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("X mapping difference for channel", i + 1)
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_y"],
                                  numpy.array(
                                      [settings.dy * (i + 1), 0.0, 1.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("Y mapping difference for channel", i + 1)

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05,
                          0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, settings.
                                                      pixel_size, [])

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i + 1) + "_zcal.dax",
                             "c" + str(i + 1) + "_random_map.hdf5", dz.size)

        # Get localizations to use for PSF measurement.
        #
        subprocess.call([
            "python", mp_path + "psf_localizations.py", "--bin",
            "c1_map_ref.hdf5", "--map", "map.map", "--aoi_size",
            str(aoi_size)
        ])

        # Create PSF z stacks.
        #
        for i in range(4):
            subprocess.call([
                "python", mp_path + "psf_zstack.py", "--movie",
                "c" + str(i + 1) + "_zcal.dax", "--bin",
                "c1_map_ref_c" + str(i + 1) + "_psf.hdf5", "--zstack",
                "c" + str(i + 1) + "_zstack", "--scmos_cal", "calib.npy",
                "--aoi_size",
                str(aoi_size)
            ])

        # Measure PSF.
        #
        for i in range(4):
            subprocess.call([
                "python", mp_path + "measure_psf.py", "--zstack",
                "c" + str(i + 1) + "_zstack.npy", "--zoffsets", "z_offset.txt",
                "--psf_name", "c" + str(i + 1) + "_psf_normed.psf",
                "--z_range",
                str(settings.psf_z_range), "--normalize"
            ])

    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            subprocess.call([
                "python", sp_path + "psf_to_spline.py", "--psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--spline",
                "c" + str(i + 1) + "_psf.spline", "--spline_size",
                str(settings.psf_size)
            ])

    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        subprocess.call([
            "python", mp_path + "plane_weighting.py", "--background",
            str(settings.photons[0][0]), "--photons",
            str(settings.photons[0][1]), "--output", "weights.npy", "--xml",
            "multicolor.xml", "--no_plots"
        ])
Пример #27
0
def configure(no_splines, cal_file = None):

    # Create sCMOS calibration file if requested.
    #
    if cal_file is not None:
        offset = numpy.zeros((settings.y_size, settings.x_size)) + settings.camera_offset
        variance = numpy.ones((settings.y_size, settings.x_size))
        gain = numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain
        rqe = numpy.ones((settings.y_size, settings.x_size))
        numpy.save(cal_file, [offset, variance, gain, rqe, 2])
        
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(cal_file = cal_file)
    params.toXMLFile("spliner.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call(["python", sim_path + "emitters_on_grid.py",
                     "--bin", "grid_list.hdf5",
                     "--nx", str(settings.nx),
                     "--ny", str(settings.ny),
                     "--spacing", "20"])

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                     "--bin", "random_list.hdf5",
                     "--density", "1.0",
                     "--margin", str(settings.margin),
                     "--sx", str(settings.x_size),
                     "--sy", str(settings.y_size)])
    
    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call(["python", sim_path + "emitters_on_grid.py",
                     "--bin", "sparse_list.hdf5",
                     "--nx", "6",
                     "--ny", "3",
                     "--spacing", "40"])
        
    if no_splines:
        return
    
    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = 10)
    cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, 100.)
    pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, 20000.0)
    psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            dither = True,
                            x_size = settings.x_size,
                            y_size = settings.y_size)
                        
    sim.simulate("spline_2d.tif", "sparse_list.hdf5", 5)

    # Measure the PSF.
    #
    print("Measuring PSF.")
    spliner_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"
    subprocess.call(["python", spliner_path + "measure_psf.py",
                     "--movie", "spline_2d.tif",
                     "--bin", "spline_2d_ref.hdf5",
                     "--psf", "psf.psf",
                     "--want2d",
                     "--aoi_size", str(settings.spline_size+1)])

    # Measure the Spline.
    #
    if True:
        print("Measuring Spline.")
        subprocess.call(["python", spliner_path + "psf_to_spline.py",
                         "--psf", "psf.psf",
                         "--spline", "psf.spline",
                         "--spline_size", str(settings.spline_size)])
Пример #28
0
def configure(no_splines, cal_file=None):

    # Create sCMOS calibration file if requested.
    #
    if cal_file is not None:
        offset = numpy.zeros(
            (settings.y_size, settings.x_size)) + settings.camera_offset
        variance = numpy.ones((settings.y_size, settings.x_size))
        gain = numpy.ones(
            (settings.y_size, settings.x_size)) * settings.camera_gain
        rqe = numpy.ones((settings.y_size, settings.x_size))
        numpy.save(cal_file, [offset, variance, gain, rqe, 2])

    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(cal_file=cal_file)
    params.toXMLFile("spliner.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin", "grid_list.hdf5",
        "--nx",
        str(settings.nx), "--ny",
        str(settings.ny), "--spacing", "20", "--zrange",
        str(settings.test_z_range), "--zoffset",
        str(settings.test_z_offset)
    ])

    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    subprocess.call([
        "python", sim_path + "emitters_uniform_random.py", "--bin",
        "random_list.hdf5", "--density", "1.0", "--margin",
        str(settings.margin), "--sx",
        str(settings.x_size), "--sy",
        str(settings.y_size), "--zrange",
        str(settings.test_z_range)
    ])

    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
    subprocess.call([
        "python", sim_path + "emitters_on_grid.py", "--bin",
        "sparse_list.hdf5", "--nx", "6", "--ny", "3", "--spacing", "40"
    ])

    if no_splines:
        return

    # Create beads.txt file for spline measurement.
    #
    with saH5Py.SAH5Py("sparse_list.hdf5") as h5:
        locs = h5.getLocalizations()
        numpy.savetxt("beads.txt",
                      numpy.transpose(numpy.vstack((locs['x'], locs['y']))))

    # Create drift file, this is used to displace the localizations in the
    # PSF measurement movie.
    #
    dz = numpy.arange(-settings.spline_z_range,
                      settings.spline_z_range + 0.001, 0.01)
    drift_data = numpy.zeros((dz.size, 3))
    drift_data[:, 2] = dz
    numpy.savetxt("drift.txt", drift_data)

    # Also create the z-offset file.
    #
    z_offset = numpy.ones((dz.size, 2))
    z_offset[:, 1] = dz
    numpy.savetxt("z_offset.txt", z_offset)

    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3: background.UniformBackground(
        s, x, y, i3, photons=10)
    cam_f = lambda s, x, y, i3: camera.Ideal(s, x, y, i3, 100.)
    drift_f = lambda s, x, y, i3: drift.DriftFromFile(s, x, y, i3, "drift.txt")
    pp_f = lambda s, x, y, i3: photophysics.AlwaysOn(s, x, y, i3, 20000.0)
    psf_f = lambda s, x, y, i3: psf.PupilFunction(s, x, y, i3, 100.0, settings.
                                                  zmn)

    sim = simulate.Simulate(background_factory=bg_f,
                            camera_factory=cam_f,
                            drift_factory=drift_f,
                            photophysics_factory=pp_f,
                            psf_factory=psf_f,
                            x_size=settings.x_size,
                            y_size=settings.y_size)

    sim.simulate("spline.dax", "sparse_list.hdf5", dz.size)

    # Measure the PSF.
    #
    print("Measuring PSF.")
    psf_name = "psf.psf"
    spliner_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/spliner/"
    subprocess.call([
        "python", spliner_path + "measure_psf_beads.py", "--movie",
        "spline.dax", "--zoffset", "z_offset.txt", "--beads", "beads.txt",
        "--psf", psf_name, "--aoi_size",
        str(settings.spline_size + 1)
    ])

    # Smooth the PSF if requested.
    #
    if settings.smooth_psf:
        with open(psf_name, "rb") as fp:
            psf_data = pickle.load(fp)
        sm_psf = measurePSFUtils.smoothPSF(psf_data["psf"],
                                           xy_sigma=settings.smooth_psf_sigma,
                                           z_sigma=settings.smooth_psf_sigma)
        psf_data["psf"] = sm_psf
        psf_data["smoothed"] = True

        psf_name = "psf_smooth.psf"
        with open(psf_name, "wb") as fp:
            pickle.dump(psf_data, fp)

    # Measure the Spline.
    #
    if True:
        print("Measuring Spline.")
        subprocess.call([
            "python", spliner_path + "psf_to_spline.py", "--psf", psf_name,
            "--spline", "psf.spline", "--spline_size",
            str(settings.spline_size)
        ])
Пример #29
0
def configure(no_splines, cal_file = None):

    # Create sCMOS calibration file if requested.
    #
    if cal_file is not None:
        offset = numpy.zeros((settings.y_size, settings.x_size)) + settings.camera_offset
        variance = numpy.ones((settings.y_size, settings.x_size))
        gain = numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain
        rqe = numpy.ones((settings.y_size, settings.x_size))
        numpy.save(cal_file, [offset, variance, gain, rqe, 2])
        
    # Create parameters file for analysis.
    #
    print("Creating XML file.")
    params = testingParameters(cal_file = cal_file)
    params.toXMLFile("spliner.xml")

    # Create localization on a grid file.
    #
    print("Creating gridded localization.")
    emittersOnGrid.emittersOnGrid("grid_list.hdf5",
                                  settings.nx,
                                  settings.ny,
                                  1.5,
                                  20,
                                  0.0,
                                  0.0)
    
    # Create randomly located localizations file.
    #
    print("Creating random localization.")
    emittersUniformRandom.emittersUniformRandom("random_list.hdf5",
                                                1.0,
                                                settings.margin,
                                                settings.x_size,
                                                settings.y_size,
                                                0.0)
    
    # Create sparser grid for PSF measurement.
    #
    print("Creating data for PSF measurement.")
    emittersOnGrid.emittersOnGrid("sparse_list.hdf5",
                                  6,
                                  3,
                                  1.5,
                                  40,
                                  0.0,
                                  0.0)
        
    if no_splines:
        return

    # Create beads.txt file for spline measurement.
    #
    with saH5Py.SAH5Py("sparse_list.hdf5") as h5:
        locs = h5.getLocalizations()
        numpy.savetxt("beads.txt", numpy.transpose(numpy.vstack((locs['x'], locs['y']))))
    
    # Create simulated data for PSF measurement.
    #
    bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = 10)
    cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, 100.)
    pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, 20000.0)
    psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

    sim = simulate.Simulate(background_factory = bg_f,
                            camera_factory = cam_f,
                            photophysics_factory = pp_f,
                            psf_factory = psf_f,
                            dither = True,
                            x_size = settings.x_size,
                            y_size = settings.y_size)
                        
    sim.simulate("spline_2d.tif", "sparse_list.hdf5", 5)

    # Measure the PSF.
    #
    print("Measuring PSF.")
    psf_name = "psf.psf"
    measurePSF.measurePSF("spline_2d.tif",
                          "na",
                          "sparse_list.hdf5",
                          psf_name,
                          want2d = True,
                          aoi_size = int(settings.spline_size + 1),
                          pixel_size = settings.pixel_size * 1.0e-3)

    # Measure the Spline.
    #
    if True:
        print("Measuring Spline.")
        psfToSpline.psfToSpline(psf_name, "psf.spline", settings.spline_size)
Пример #30
0
drift_data = numpy.zeros((dz.size, 3))
drift_data[:,2] = dz
numpy.savetxt("drift.txt", drift_data)

# Also create the z-offset file.
#
z_offset = numpy.ones((dz.size, 2))
z_offset[:,1] = dz
numpy.savetxt("z_offset.txt", z_offset)

# Create simulated data for PSF measurement.
#
bg_f = lambda s, x, y, i3 : background.UniformBackground(s, x, y, i3, photons = 10)
cam_f = lambda s, x, y, i3 : camera.Ideal(s, x, y, i3, 100.)
drift_f = lambda s, x, y, i3 : drift.DriftFromFile(s, x, y, i3, "drift.txt")
pp_f = lambda s, x, y, i3 : photophysics.AlwaysOn(s, x, y, i3, 20000.0)

if settings.use_dh:
    psf_f = lambda s, x, y, i3 : psf.DHPSF(s, x, y, i3, 100.0, z_range = settings.spline_z_range)
else:
    psf_f = lambda s, x, y, i3 : psf.PupilFunction(s, x, y, i3, 100.0, settings.zmn)

sim = simulate.Simulate(background_factory = bg_f,
                        camera_factory = cam_f,
                        drift_factory = drift_f,
                        photophysics_factory = pp_f,
                        psf_factory = psf_f,
                        x_size = settings.x_size,
                        y_size = settings.y_size)
                        
sim.simulate("spline.dax", "sparse_list.hdf5", dz.size)