Пример #1
0
 def test_insufficient_samples(self):
     """Test if function returns ``ValueError`` when user specifies a number of samples less
     than 1 """
     with pytest.raises(
             ValueError,
             match="Number of samples must be greater than zero"):
         sample.uniform_sampler(modes=2, sampled_modes=2, samples=0)
Пример #2
0
 def test_output_dimensions(self):
     """Tests if function returns list of correct dimensions"""
     samples = np.array(
         sample.uniform_sampler(modes=2, sampled_modes=1, samples=3))
     dims = samples.shape
     assert len(dims) == 2
     assert dims[0] == 3
     assert dims[1] == 2
Пример #3
0
def test_random_seed(dim, adj):
    """Test for the function ``glassonion.sample.random_seed``. Checks that samples are identical
    after repeated initialization of ``random_seed``."""

    sample.random_seed(1968)
    q_s_1 = sample.quantum_sampler(A=adj,
                                   n_mean=2,
                                   samples=10,
                                   backend_options={"threshold": False})
    u_s_1 = sample.uniform_sampler(modes=dim, sampled_modes=2, samples=10)

    sample.random_seed(1968)
    q_s_2 = sample.quantum_sampler(A=adj,
                                   n_mean=2,
                                   samples=10,
                                   backend_options={"threshold": False})
    u_s_2 = sample.uniform_sampler(modes=dim, sampled_modes=2, samples=10)

    assert np.array_equal(q_s_1, q_s_2)
    assert np.array_equal(u_s_1, u_s_2)
Пример #4
0
    def test_output_sampled_modes(self):
        """Tests if samples from function are only zeros and ones and have a number of ones equal to
        ``sampled_modes``"""
        samples = np.array(
            sample.uniform_sampler(modes=2, sampled_modes=1, samples=3))

        only_zero_one = True

        for samp in samples:
            if not np.allclose(np.unique(samp), [0, 1]):
                only_zero_one = False

        assert only_zero_one
        assert np.unique(np.sum(samples, axis=1)) == 1
Пример #5
0
def sample_subgraphs(
    graph: nx.Graph,
    nodes: int,
    samples: int = 1,
    sample_options: Optional[dict] = None,
    backend_options: Optional[dict] = None,
) -> list:
    """Functionality for sampling subgraphs.

    The optional ``sample_options`` argument can be used to specify the type of sampling. It
    should be a dict that contains any of the following:

    .. glossary::

        key: ``"distribution"``, value: *str*
            Subgraphs can be sampled according to the following distributions:

            - ``"gbs"``: for generating subgraphs according to the Gaussian boson sampling
              distribution. In this distribution, subgraphs are sampled with a variable size (
              default).
            - ``"uniform"``: for generating subgraphs uniformly at random. When using this
              distribution, subgraphs are of a fixed size. Note that ``backend_options`` are not
              used and that remote sampling is unavailable due to the simplicity of the
              distribution.

        key: ``"postselect_ratio"``, value: *float*
            Ratio of ``nodes`` used to determine the minimum size of subgraph sampled; defaults
            to 0.75.

    Args:
        graph (nx.Graph): the input graph
        nodes (int): the mean size of subgraph samples
        samples (int): number of samples; defaults to 1
        sample_options (dict[str, Any]): dictionary specifying options used by ``sample_subgraphs``;
            defaults to :const:`SAMPLE_DEFAULTS`
        backend_options (dict[str, Any]): dictionary specifying options used by backends during
            sampling; defaults to ``None``

    Returns:
        list[list[int]]: a list of length ``samples`` whose elements are subgraphs given by a
        list of nodes
    """
    sample_options = {**SAMPLE_DEFAULTS, **(sample_options or {})}

    distribution = sample_options["distribution"]

    if distribution == "uniform":
        s = sample.uniform_sampler(modes=graph.order(),
                                   sampled_modes=nodes,
                                   samples=samples)
    elif distribution == "gbs":
        postselect = int(sample_options["postselect_ratio"] * nodes)
        backend_options = {**(backend_options or {}), "postselect": postselect}

        s = sample.quantum_sampler(
            A=nx.to_numpy_array(graph),
            n_mean=nodes,
            samples=samples,
            backend_options=backend_options,
        )
    else:
        raise ValueError("Invalid distribution selected")

    return to_subgraphs(graph, s)
Пример #6
0
 def test_sampled_modes_exceeds_modes(self):
     """Test if function returns ``ValueError`` when user specifies a number of
     ``sampled_modes`` that exceeds ``modes`` """
     with pytest.raises(ValueError, match="Modes and sampled_modes"):
         sample.uniform_sampler(modes=2, sampled_modes=3, samples=2)
Пример #7
0
 def test_insufficient_sampled_modes(self):
     """Tests if function returns ``ValueError`` when user specifies a number of
     ``sampled_modes`` less than 1 """
     with pytest.raises(ValueError, match="Modes and sampled_modes"):
         sample.uniform_sampler(modes=2, sampled_modes=0, samples=2)