def ptch_pose_exp2(isRun=False, deviceId=[1], numPoseStream=256, numPatchStream=256): prms = sp.get_prms(geoFence='dc-v1', labels=['pose', 'ptch'], labelType=['quat', 'wngtv'], lossType=['l2', 'classify'], labelFrac=[0.5, 0.5], rawImSz=256, crpSz=192, splitDist=100) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, multiLossProto='v1', ptchStreamNum=numPatchStream, poseStreamNum=numPoseStream) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def ptch_pose_euler_mx45_exp1_from_ptch(isRun=False, deviceId=[1], numTrain=1e+7, batchsize=256, extraFc=None, isPythonLayer=True, poseModelIter=10000): #srcPrms, srcCPrms = smallnetv2_pool4_pose_euler_mx45_crp192_rawImSz256(isRun=False, # isPythonLayer=True, extraFc=512) srcPrms, srcCPrms = mept.smallnetv2_pool4_ptch_crp192_rawImSz256(isRun=False, isPythonLayer=True) prms = sp.get_prms(geoFence='dc-v2', labels=['pose', 'ptch'], labelType=['euler', 'wngtv'], lossType=['l2', 'classify'], labelFrac=[0.5,0.5], rawImSz=256, crpSz=192, splitDist=100, numTrain=numTrain, maxEulerRot=45, nBins=[None, None], binTypes=[None, None]) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, multiLossProto=None, extraFc=extraFc, isPythonLayer=isPythonLayer) lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=20000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) exp = se.make_experiment_from_previous(srcPrms, srcCPrms, prms, cPrms, srcModelIter=poseModelIter) if isRun: exp.run() return prms, cPrms
def smallnetv2_pool4_pose_euler_mx45_crp192_rawImSz256(isRun=False, numTrain=1e+7, deviceId=[0], isPythonLayer=False, isGray=False, extraFc=None, resumeIter=0): prms = sp.get_prms(geoFence='dc-v2', labels=['pose'], labelType=['euler'], lossType=['l2'], maxEulerRot=45, rawImSz=256, splitDist=100, numTrain=numTrain, crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer, extraFc=extraFc) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, resumeIter=resumeIter) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms
def smallnetv2_pool4_pose_crp192_rawImSz256(isRun=False, isGray=False, numTrain=1e+7, deviceId=[0], isPythonLayer=False, runNum=0): prms = sp.get_prms_pose(geoFence='dc-v2', crpSz=192, rawImSz=256, splitDist=100, numTrain=numTrain) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=1.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, runNum=runNum) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv5_pose_crp192_fc5_rawImSz256(isRun=False, isGray=False, numTrain=1e+7, deviceId=[0], isPythonLayer=True, runNum=0, extraFc=None, numFc5=None, lrAbove=None): prms = sp.get_prms_pose(geoFence='dc-v2', crpSz=192, rawImSz=256, splitDist=100, numTrain=numTrain) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v5', concatLayer='fc5', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer, numFc5=numFc5, extraFc=extraFc, lrAbove=lrAbove) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=1.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, runNum=runNum) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms
def ptch_pose_euler_mx90_smallnet_v7_fc5_exp2(isRun=False, deviceId=[1], numTrain=1e+7, batchsize=256, extraFc=None, isPythonLayer=True, numFc5=None, numCommonFc=None, numPoseStream=256, numPatchStream=256): #Experiment prms prms = sp.get_prms(geoFence='dc-v2', labels=['pose', 'ptch'], labelType=['euler', 'wngtv'], lossType=['l2', 'classify'], labelFrac=[0.5,0.5], rawImSz=256, crpSz=192, splitDist=100, numTrain=numTrain, maxEulerRot=90, nBins=[None, None], binTypes=[None, None]) #Network architectures nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v7', concatLayer='fc5', lossWeight=10.0, multiLossProto='v1', extraFc=extraFc, isPythonLayer=isPythonLayer, numFc5=numFc5, numCommonFc=numCommonFc, poseStreamNum=numPoseStream, ptchStreamNum=numPatchStream) #Learning rate info lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=20000, clip_gradients=10.0, debug_info=True) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms
def smallnetv5_fc5_pose_euler_crp192_rawImSz256_lossl1(isRun=False, numTrain=1e+7, deviceId=[0], isPythonLayer=True, isGray=False, extraFc=None, lrAbove=None, numFc5=None): prms = sp.get_prms(geoFence='dc-v2', labels=['pose'], labelType=['euler'], lossType=['l1'], maxEulerRot=None, rawImSz=256, splitDist=100, numTrain=numTrain, crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v5', concatLayer='fc5', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer, extraFc=extraFc, numFc5=numFc5, lrAbove=lrAbove) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms
def smallnetv2_pool4_pose_randcrp(isRun=False): prms = sp.get_prms_pose(geoFence='dc-v1') nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', randCrop=True) lPrms = se.get_lr_prms(batchsize=256, stepsize=5000) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[0,1,2,3]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv3_pool4_pose_crp192(isRun=False): prms = sp.get_prms_pose(geoFence='dc-v1', crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v3', concatLayer='pool4', lossWeight=10.0) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[0]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnet_pool4_pose(isRun=False): prms = sp.get_prms_pose(geoFence='dc-v1') nPrms = se.get_nw_prms(imSz=101, netName='smallnet', concatLayer='pool4') lPrms = se.get_lr_prms(batchsize=256) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[0,1]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv3_pool4_pose_euler_mx45_crp192(isRun=False): prms = sp.get_prms(geoFence='dc-v1', labels=['pose'], labelType=['euler'], lossType=['l2'], maxEulerRot=45, crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v3', concatLayer='pool4', lossWeight=10.0) lPrms = se.get_lr_prms(batchsize=256, clip_gradients=1.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv2_pool4_ptch_pose_crp192_rawImSz256(isRun=False): prms = sp.get_prms(geoFence='dc-v1', labels=['pose', 'ptch'], labelType=['quat', 'wngtv'], lossType=['l2', 'classify'], labelFrac=[0.5,0.5], rawImSz=256, crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv2_pool4_nrml_crp192_rawImSz256_newsplits(isRun=False): prms = sp.get_prms(geoFence='dc-v1', labels=['nrml'], labelType=['xyz'], lossType=['l2'], rawImSz=256, crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, maxJitter=0) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv2_pool4_pose_crp192_rawImSz256_newsplits(isRun=False, isGray=False): prms = sp.get_prms_pose(geoFence='dc-v1', crpSz=192, rawImSz=256, splitDist=100) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=[1]) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv2_pool4_ptch_crp192_rawImSz256(isRun=False, isGray=False, numTrain=1e+7, isPythonLayer=False, deviceId=[2], batchsize=256, resumeIter=0, extraFc=None, lrAbove=None): prms = sp.get_prms_ptch(geoFence='dc-v2', crpSz=192, rawImSz=256, splitDist=100, numTrain=numTrain) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer, extraFc=extraFc, lrAbove=lrAbove) lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=10000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, resumeIter=resumeIter) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms
def smallnetv2_pool4_nrml_crp192_rawImSz256_nojitter(isRun=False, isGray=False, numTrain=1e+7, deviceId=[0], makeNrmlUni=0.002, isPythonLayer=True): prms = sp.get_prms_nrml(geoFence='dc-v2', crpSz=192, rawImSz=256, splitDist=100, numTrain=numTrain, nrmlMakeUni=makeNrmlUni) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v2', concatLayer='pool4', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, maxJitter=0, isPythonLayer=isPythonLayer) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0, debug_info=True) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def ptch_pose_euler_mx90_alexnet_exp1(isRun=False, deviceId=[1], numTrain=1e+7, batchsize=256, extraFc=None, isPythonLayer=True): prms = sp.get_prms(geoFence='dc-v2', labels=['pose', 'ptch'], labelType=['euler', 'wngtv'], lossType=['l2', 'classify'], labelFrac=[0.5,0.5], rawImSz=256, crpSz=192, splitDist=100, numTrain=numTrain, maxEulerRot=90, nBins=[None, None], binTypes=[None, None]) nPrms = se.get_nw_prms(imSz=101, netName='alexnet', concatLayer='conv5', lossWeight=10.0, multiLossProto=None, extraFc=extraFc, isPythonLayer=isPythonLayer) lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=20000, clip_gradients=10.0) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() else: return prms, cPrms
def smallnetv5_fc5_ptch_crp192_rawImSz256(isRun=False, isGray=False, numTrain=1e+7, isPythonLayer=True, deviceId=[2], batchsize=256, resumeIter=0, extraFc=None, numFc5=512, runNum=0, lrAbove=None, geoFence='dc-v2', numTest=1e+4): prms = sp.get_prms_ptch(geoFence=geoFence, crpSz=192, rawImSz=256, splitDist=100, numTrain=numTrain, numTest=numTest) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v5', concatLayer='fc5', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer, extraFc=extraFc, numFc5=numFc5, lrAbove=lrAbove) lPrms = se.get_lr_prms(batchsize=batchsize, stepsize=10000, clip_gradients=10.0, debug_info=True) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId, resumeIter=resumeIter, runNum=runNum) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms
def smallnetv5_pool4_pose_classify_euler_crp192_rawImSz256( isRun=False, numTrain=1e+7, deviceId=[0], isPythonLayer=True, isGray=False, numFc5=512): prms = sp.get_prms(geoFence='dc-v2', labels=['pose'], labelType=['euler'], lossType=['classify'], nBins=[20], binTypes=['uniform'], maxEulerRot=None, rawImSz=256, splitDist=100, numTrain=numTrain, crpSz=192) nPrms = se.get_nw_prms(imSz=101, netName='smallnet-v5', concatLayer='fc5', lossWeight=10.0, randCrop=False, concatDrop=False, isGray=isGray, isPythonLayer=isPythonLayer, numFc5=numFc5) lPrms = se.get_lr_prms(batchsize=256, stepsize=10000, clip_gradients=10.0, debug_info=True) cPrms = se.get_caffe_prms(nPrms, lPrms, deviceId=deviceId) if isRun: exp = se.make_experiment(prms, cPrms) exp.run() return prms, cPrms