def pddl(self, costs, durative=False): if durative: return self.durative_pddl() parameters_pddl = ' '.join(param.typed_pddl() for param in self.parameters) augmented_effect = self.effect if costs and ( self.cost is not None ) and not self.cost_included: # Can only have one cost effect (uses last effect parsed) augmented_effect = And(augmented_effect, Cost(self.cost)) return OPERATOR_PDDL.format(self._pddl_name, self.name, parameters_pddl, self.condition.pddl(), augmented_effect.pddl())
def __init__(self, oracle): params = (P('q1', CONF), P('q2', CONF)) q1, q2 = params super(Move, self).__init__( self.__class__.__name__, params, [ AtConfig(q1), #MoveCost(q1, q2), #Initialize(MoveCost(q1, q2)), # TODO - should I define this here? IsCollisionFree(q1, q2), ], [ AtConfig(q2), Not(AtConfig(q1)), Cost(MoveCost(q1, q2)), ])
def get_stream_functions(universe): action_to_function = {} for action in universe.name_to_action.values(): if get_cost_atoms(action): continue if any(atom.predicate in universe.stream_predicates for atom in action.condition.get_atoms()): # TODO - assert that the atom is used positively # TODO - alternatively, could make a stream action that has achieves the cost and plan with it action_to_function[action] = Function( FUNCTION_TEMPLATE % action.name, [param.type for param in action.parameters]) universe.add_function(action_to_function[action]) function = action_to_function[action](*action.parameters) action.effect = And(action.effect, Cost(function)) action.cost_included = True return action_to_function
def compile_problem(estimator, task): # Data types CONF = Type() SURFACE = Type() # Difference between fixed and movable objects ITEM = Type() POSE = Type() CLASS = Type() # Fluent predicates AtConf = Pred(CONF) HandEmpty = Pred() Holding = Pred(ITEM) AtPose = Pred(ITEM, POSE) Supported = Pred(POSE, SURFACE) # Fluent Localized = Pred(OBJECT) Measured = Pred(OBJECT) # Static predicates IsKin = Pred(POSE, CONF) IsClass = Pred(OBJECT, CLASS) IsVisible = Pred(SURFACE, CONF) IsSupported = Pred(POSE, SURFACE) # Static # Functions ScanRoom = Func(SURFACE) #ScanTable = Func(SURFACE, TYPE) ScanTable = Func( SURFACE, ITEM) # TODO: could include more specific vantage point costs Distance = Func(CONF, CONF) # Derived On = Pred(ITEM, SURFACE) ComputableP = Pred(POSE) ComputableQ = Pred(CONF) # Free parameters Q1, Q2 = Param(CONF), Param(CONF) S1 = Param(SURFACE) B1, B2 = Param(ITEM), Param(ITEM) P1, P2 = Param(POSE), Param(POSE) rename_easy(locals()) # Trick to make debugging easier # TODO: could just do easier version of this that doesn't require localized to start actions = [ Action( name='pick', parameters=[B1, P1, Q1], # TODO: Visibility constraint condition=And(Localized(B1), AtPose(B1, P1), HandEmpty(), AtConf(Q1), IsKin(P1, Q1)), effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))), Action(name='place', parameters=[B1, P1, Q1], condition=And(Holding(B1), AtConf(Q1), IsKin(P1, Q1)), effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))), Action(name='move', parameters=[Q1, Q2], condition=And(AtConf(Q1), ComputableQ(Q2)), effect=And(AtConf(Q2), Not(AtConf(Q1)), Cost(Distance(Q1, Q2)))), Action(name='scan_room', parameters=[S1], condition=Not(Localized(S1)), effect=And(Localized(S1), Cost(ScanRoom(S1)))), # TODO: need to set later poses to be usable or not to constrain order Action(name='scan_table', parameters=[S1, B1, P1, Q1], condition=And(Localized(S1), AtConf(Q1), IsVisible(S1, Q1), Not(Localized(B1))), effect=And(Localized(B1), Measured(P1), Supported(P1, S1), Cost(ScanTable(S1, B1)))), ] axioms = [ # TODO: axiom for on? Might need a stream that generates initial fluents for On # TODO: axiom that says that all fake values depending on a certain one now are usable # TODO: could use stream predicates as fluents (as long as it doesn't break anything...) Axiom(effect=On(B1, S1), condition=Exists([P1], And(AtPose(B1, P1), Or(IsSupported(P1, S1), Supported(P1, S1))))), # TODO: compile automatically Axiom(effect=ComputableQ(Q1), condition=Or(Measured(Q1), Exists([P1], And(IsKin(P1, Q1), ComputableP(P1))), Exists([S1], And(IsVisible(S1, Q1), Localized(S1))))), Axiom(effect=ComputableP(P1), condition=Or( Measured(P1), Exists([S1], And(IsSupported(P1, S1), Localized(S1))))), ] ##### surface_types = estimator.surface_octomaps.keys() item_types = estimator.object_octomaps.keys() names_from_type = defaultdict(list) known_poses = {} holding = None def add_type(cl): name = '{}{}'.format(cl, len(names_from_type[cl])) names_from_type[cl].append(name) return name # TODO: this is all very similar to the generic open world stuff if estimator.holding is not None: holding = add_type(estimator.holding) for cl, octomap in estimator.surface_octomaps.items( ): # TODO: generic surface object for pose in octomap.get_occupied(): known_poses[add_type(cl)] = pose for cl, octomap in estimator.object_octomaps.items(): for pose in octomap.get_occupied(): known_poses[add_type(cl)] = pose print dict(names_from_type), known_poses # Human tells you to move block -> at least one block # At least one block -> at least one surface # TODO: generate fake properties about these fake values? goal_objects, goal_surfaces = entities_from_task(task) for cl in surface_types: add_type(cl) #for cl in goal_surfaces: # for i in xrange(len(names_from_type[cl]), goal_surfaces[cl]): # add_type(cl) #for cl in item_types: for cl in goal_objects: for i in xrange(len(names_from_type[cl]), goal_objects[cl]): add_type(cl) ##### initial_atoms = [ AtConf(estimator.robot_conf), Measured(CONF(estimator.robot_conf)) ] if holding is None: initial_atoms.append(HandEmpty()) else: initial_atoms.append(Holding(holding)) class_from_name = { name: ty for ty in names_from_type for name in names_from_type[ty] } for name, ty in class_from_name.iteritems(): ENTITY = SURFACE if ty in surface_types else ITEM initial_atoms.append(IsClass(ENTITY(name), ty)) if name in known_poses: initial_atoms.append(Localized(ENTITY(name))) if ENTITY == ITEM: pose = known_poses[name] initial_atoms += [AtPose(name, pose), Measured(POSE(pose))] else: if ENTITY == ITEM: pose = 'p_init_{}'.format( name ) # The object should always be at this pose (we just can't do anything about it yet) initial_atoms += [AtPose(name, pose)] goal_literals = [] if task.holding is None: goal_literals.append(HandEmpty()) elif task.holding is not False: goal_literals.append( Exists([B1], And(Holding(B1), IsClass(B1, task.holding)))) for obj, surface in task.object_surfaces: goal_literals.append( Exists([B1, S1], And(On(B1, S1), IsClass(B1, obj), IsClass(S1, surface)))) goal_formula = And(*goal_literals) #################### TOLERANCE = 0.1 def is_visible(table, conf): x, y = conf pose = known_poses[table] #return (pose == x) and (y == 2) #return (pose == x) and (y == 2) return (pose == x) and (abs(y - 2) < TOLERANCE) def is_kinematic(pose, conf): x, y = conf #return (pose == x) and (y == 1) return (pose == x) and (abs(y - 1) < TOLERANCE) #################### def sample_visible(table): # TODO: could generically do this with poses if table in known_poses: y = 2 #y += round(uniform(-TOLERANCE, TOLERANCE), 3) conf = (known_poses[table], y) assert is_visible(table, conf) else: conf = 'q_vis_{}'.format(table) yield (conf, ) def inverse_kinematics(pose): # TODO: list stream that uses ending info # TODO: only do if localized as well? # TODO: is it helpful to have this even if the raw value is kind of wrong (to steer the search) if type(pose) != str: y = 1 #y += round(uniform(-TOLERANCE, TOLERANCE), 3) conf = (pose, y) assert is_kinematic(pose, conf) else: conf = 'q_ik_{}'.format(pose) yield (conf, ) def sample_table(table): if table in known_poses: pose = known_poses[table] else: pose = 'p_{}'.format(table) yield (pose, ) #################### MAX_DISTANCE = 10 # TODO: maybe I don't need to worry about normalizing. I can just pretend non-parametric again for planning def scan_surface_cost( surface, obj): # TODO: what about multiple scans of the belief? fail_cost = 100 surface_cl = class_from_name[surface] obj_cl = class_from_name[obj] prob = 1.0 if obj_cl in estimator.object_prior: prob *= estimator.object_prior[obj_cl].get(surface_cl, 0) if surface in known_poses: prob *= estimator.object_octomaps[obj_cl].get_prob( known_poses[surface]) else: prob *= 0.1 # Low chance if you don't even know the table exists # TODO: could even include the probability the table exists #return expected_cost(1, fail_cost, prob) return mdp_cost(1, fail_cost, prob) def scan_room_cost(surface): # TODO: try to prove some sort of bound on the cost to recover will suffice? fail_cost = 100 cl = class_from_name[surface] occupied_poses = { known_poses[n] for n in names_from_type[cl] if n in known_poses } p_failure = 1.0 for pose in estimator.poses: if pose not in occupied_poses: p_failure *= (1 - estimator.surface_octomaps[cl].get_prob(pose)) return 1 * (1 - p_failure) + fail_cost * p_failure def distance_cost(q1, q2): if str in (type(q1), type(q2)): return MAX_DISTANCE # TODO: take the max possible pose distance # TODO: can use the info encoded within these to obtain better bounds return np.linalg.norm(np.array(q2) - np.array(q1)) #################### # TODO: could add measured as the output to these streams = [ GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsKin(P1, Q1)], generator=inverse_kinematics), GeneratorStream(inputs=[S1], outputs=[Q1], conditions=[], effects=[IsVisible(S1, Q1)], generator=sample_visible), GeneratorStream(inputs=[S1], outputs=[P1], conditions=[], effects=[IsSupported(P1, S1)], generator=sample_table), CostStream(inputs=[S1, B1], conditions=[], effects=[ScanTable(S1, B1)], function=scan_surface_cost), CostStream(inputs=[Q1, Q2], conditions=[], effects=[Distance(Q1, Q2), Distance(Q2, Q1)], function=distance_cost), CostStream(inputs=[S1], conditions=[], effects=[ScanRoom(S1)], function=scan_room_cost), # TODO: make an is original precondition and only apply these to original values? # I suppose I could apply to all concrete things but that's likely not useful #TestStream(inputs=[S1, Q1], conditions=[IsOriginal(Q1)], effects=[IsVisible(S1, Q1)], # test=is_visible, eager=True), #TestStream(inputs=[P1, Q1], conditions=[IsOriginal(Q1), IsOriginal(Q1)], effects=[IsKin(P1, Q1)], # test=is_kinematic, eager=True), #GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[], effects=[IsVisible(P1, Q1)], # generator=sample_visible), ] problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, streams, []) def command_from_action((action, args)): if action.name == 'scan_room': return simulate_scan, [] if action.name in ('scan_table', 'look_block'): return simulate_look, [] if action.name == 'move': q1, q2 = map(get_value, args) return simulate_move, [q2] if action.name == 'pick': o, p, q = map(get_value, args) return simulate_pick, [class_from_name[o]] if action.name == 'place': return simulate_place, [] raise ValueError(action.name) return problem, command_from_action
O, L1, L2, S = Param(OBJ), Param(LOC), Param(LOC), Param(STATE) rename_easy(locals()) #UNKNOWN_LOC = 'unknown' # NOTE - I could validate safe by inspecting all objects or just the goal location # TODO - could do costs by either specifying them upfront or using STRIPStream actions = [ Action(name='find', parameters=[O, L1], # Policy to find the object or an inspection? #condition=And(At(O, UNKNOWN_LOC)), #effect=And(At(O, L1), Not(At(O, UNKNOWN_LOC)))), condition=And(UnsureLoc(O), Not(NotAtLoc(O, L1))), effect=And(At(O, L1), Not(Clear(L1)), Not(UnsureLoc(O)), Cost(FindCost(O, L1)))), # TODO - can even adjust the cost of these to bias search towards more likely Action(name='inspect_loc', parameters=[O, L1], # NOTE - O is not needed except for the execution condition=And(UnsureClear(L1)), effect=And(Clear(L1), Not(UnsureClear(L1)), Cost(InspectLocCost(L1)))), Action(name='inspect_state', parameters=[O, L1, S], condition=And(UnsureState(O), At(O, L1)), # Probably should know where it is before you worry about its state #condition=And(UnsureState(O), Not(UnsureLoc(O))), # Probably should know where it is before you worry about its state effect=And(HasState(O, S), Not(UnsureState(O)), Cost(InspectStateCost(O, S)))), # TODO - should I factor loc in the cost? Action(name='transport', parameters=[O, L1, L2], # NOTE - Leslie and Tomas call this Move #condition=And(At(O, L1)), condition=And(At(O, L1), Clear(L2)), effect=And(At(O, L2), Clear(L1), Not(At(O, L1)), Not(Clear(L2))), cost=COST_SCALE*1),
################################################## # NOTE - the location here is like a control parameter actions = [ Action( name='transport', parameters=[O, L, L2, B, B2], # NOTE - Leslie and Tomas call this Move condition=And(BAt(O, B), At(O, L), IsMoveUpdate(L, B, L2, B2)), effect=And( BAt(O, B2), At(O, L2), Not(At(O, L)), Not(BAt(O, B)), #)), Cost(MoveCost(L, B)))), #Action(name='transport', parameters=[O, B, L, B2], # NOTE - I could include belief preconditions for safety or effectiveness # condition=And(BAt(O, B), BAtAbove(L, B2, ), IsMoveUpdate(B, L, B2)), # effect=And(BAt(O, B2), Not(BAt(O, B)))), # NOTE - Leslie and Tomas call this Move Action( name='find', parameters=[O, L, B, B2], condition=And(BAt(O, B), At(O, L), IsLookUpdate(B, L, B2)), effect=And( BAt(O, B2), Not(BAt(O, B)), #)), Cost(LookCost(B, L)))), Action( name='infer_at', parameters=[O, L],