def analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism): matched_words_prev = [] unmatched_words_prev = [] # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # SPAM detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word sentence_curr.words.append(word_curr) return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff)+1 break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True matched_words_prev.append(word_prev) diff[pos] = '' break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id sentence_curr.words.append(word_curr) diff[pos] = '' pos = len(diff)+1 pos = pos + 1 if not(curr_matched): word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id sentence_curr.words.append(word_curr) return (matched_words_prev, possible_vandalism)
def analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism, relation): matched_words_prev = [] unmatched_words_prev = [] global WORD_ID # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # SPAM detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.internal_id = WORD_ID word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word sentence_curr.words.append(word_curr) word_curr.used.append(revision_curr.wikipedia_id) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.used.append(revision_curr.wikipedia_id) word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff)+1 #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True matched_words_prev.append(word_prev) diff[pos] = '' word_prev.deleted.append(revision_curr.wikipedia_id) if (revisions[word_prev.revision].contributor_name != revision_curr.contributor_name): if (word_prev.revision in relation.deleted.keys()): relation.deleted.update({word_prev.revision : relation.deleted[word_prev.revision] + 1 }) else: relation.deleted.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_deleted.keys()): relation.self_deleted.update({word_prev.revision : relation.self_deleted[word_prev.revision] + 1 }) else: relation.self_deleted.update({word_prev.revision : 1 }) break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.internal_id = WORD_ID word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 diff[pos] = '' pos = len(diff)+1 pos = pos + 1 if not(curr_matched): word_curr = Word() word_curr.internal_id = WORD_ID word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 return (matched_words_prev, possible_vandalism)
def analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism, relation): matched_words_prev = [] unmatched_words_prev = [] global WORD_ID # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # SPAM detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.internal_id = WORD_ID word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word sentence_curr.words.append(word_curr) word_curr.used.append(revision_curr.wikipedia_id) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.used.append( revision_curr.wikipedia_id) word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff) + 1 #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True matched_words_prev.append(word_prev) diff[pos] = '' word_prev.deleted.append( revision_curr.wikipedia_id) if (revisions[ word_prev.revision].contributor_name != revision_curr.contributor_name): if (word_prev.revision in relation.deleted.keys()): relation.deleted.update({ word_prev.revision: relation.deleted[ word_prev.revision] + 1 }) else: relation.deleted.update( {word_prev.revision: 1}) else: if (word_prev.revision in relation.self_deleted.keys()): relation.self_deleted.update({ word_prev.revision: relation.self_deleted[ word_prev.revision] + 1 }) else: relation.self_deleted.update( {word_prev.revision: 1}) break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.internal_id = WORD_ID word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 diff[pos] = '' pos = len(diff) + 1 pos = pos + 1 if not (curr_matched): word_curr = Word() word_curr.internal_id = WORD_ID word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 return (matched_words_prev, possible_vandalism)
def analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism): matched_words_prev = [] unmatched_words_prev = [] # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # SPAM detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): print "VANDALISM: WORD DENSITY", density return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word sentence_curr.words.append(word_curr) return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff) + 1 break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True matched_words_prev.append(word_prev) diff[pos] = '' break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id sentence_curr.words.append(word_curr) diff[pos] = '' pos = len(diff) + 1 pos = pos + 1 if not (curr_matched): word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id sentence_curr.words.append(word_curr) return (matched_words_prev, possible_vandalism)