def update_bounding_polygon(self): """ Recompute bounding polygons of the member images. """ polygons = [im.polygon for im in self._images] if len(polygons) == 0: self._polygon = SphericalPolygon([]) else: self._polygon = SphericalPolygon.multi_union(polygons)
def _update_bounding_polygon(self): polygons = [im.polygon for im in self._images] if len(polygons) == 0: self._polygon = SphericalPolygon([]) self._radec = [] else: self._polygon = SphericalPolygon.multi_union(polygons) self._radec = list(self._polygon.to_radec())
def set_members(self, mlist, polygon): if mlist is None: member_list = [] elif isinstance(mlist, list): member_list = mlist if [1 for m in mlist if not isinstance(m, SkyLineMember)]: raise ValueError("The \'mlist\' argument must be either "\ "a single \'SkyLineMember\' object or a " \ "Python list of \'SkyLineMember\' objects.") elif isinstance(mlist, SkyLineMember): member_list = [mlist] else: raise ValueError("The \'mlist\' argument must be either "\ "a single \'SkyLineMember\' object or a " \ "Python list of \'SkyLineMember\' objects.") self._members = [] # Not using set to preserve order n = len(member_list) if n == 0: if polygon is None: self.polygon = SphericalPolygon([]) else: self.polygon = deepcopy(polygon) self._id = '' self._is_mf_mosaic = False elif n == 1: assert isinstance(member_list[0], SkyLineMember) if polygon is None: self.polygon = deepcopy(member_list[0].polygon) else: self.polygon = deepcopy(polygon) self._id = member_list[0].id self._members.append(member_list[0]) self._is_mf_mosaic = False else: assert isinstance(member_list[0], SkyLineMember) if polygon is None: mpol = deepcopy(member_list[0].polygon) else: mpol = deepcopy(polygon) self._members.append(member_list[0]) for m in member_list[1:]: # Report corrupted members list instead of skipping assert isinstance(m, SkyLineMember) if m not in self._members: self._members.append(m) if polygon is None: mpol = mpol.union(m.polygon) self.polygon = mpol self._update_mosaic_flag_id()
def _calc_cat_convex_hull(self): """ Calculate spherical polygon corresponding to the convex hull bounding the sources in the catalog. """ if self.wcs is None or self.catalog is None: return x = self.catalog['x'] y = self.catalog['y'] ra, dec = convex_hull(x, y, wcs=self.wcs_pix2world) if len(ra) == 0: # no points raise RuntimeError("Unexpected error: Contact sofware developer") elif len(ra) == 1: # one point. build a small box around it: x, y = convex_hull(x, y, wcs=None) xv = [x[0] - 0.5, x[0] - 0.5, x[0] + 0.5, x[0] + 0.5, x[0] - 0.5] yv = [y[0] - 0.5, y[0] + 0.5, y[0] + 0.5, y[0] - 0.5, y[0] - 0.5] ra, dec = self.wcs_pix2world(xv, yv) elif len(ra) == 3: # two points. build a small box around them: x, y = convex_hull(x, y, wcs=None) vx = -(y[1] - y[0]) vy = x[1] - x[0] norm = 2.0 * np.sqrt(vx * vx + vy * vy) vx /= norm vy /= norm xv = [x[0] + vx, x[1] + vx, x[1] + vx, x[0] - vx, x[0] + vx] yv = [y[0] + vy, y[1] + vy, y[1] + vy, x[0] - vx, x[0] + vx] ra, dec = self.wcs_pix2world(xv, yv) # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or # dec[0] != dec[-1] (even though we close the polygon in the # previous two lines). Then SphericalPolygon fails because # points are not closed. Threfore we force it to be closed: ra[-1] = ra[0] dec[-1] = dec[0] self._radec = [(ra, dec)] self._polygon = SphericalPolygon.from_radec(ra, dec) self._poly_area = np.fabs(self._polygon.area())
def _draw_members(self, map, **kwargs): """ Draw individual extensions in members. Useful for debugging. Parameters ---------- map : Basemap axes object **kwargs : Any plot arguments to pass to basemap """ wcs_list = self._indv_mem_wcslist() for wcs in wcs_list: poly = SphericalPolygon.from_wcs(wcs) poly.draw(map, **kwargs)
def _calc_sky_orig(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if overlap is None: if self.mask is None: data = self.image else: data = self.image[self.mask] polyarea = self.poly_area else: fill_mask = np.zeros(self.image.shape, dtype=bool) if isinstance(overlap, (SkyImage, SkyGroup, SphericalPolygon)): intersection = self.intersection(overlap) polyarea = np.fabs(intersection.area()) radec = intersection.to_radec() else: # assume a list of (ra, dec) tuples: radec = [] polyarea = 0.0 for r, d in overlap: poly = SphericalPolygon.from_radec(r, d) polyarea1 = np.fabs(poly.area()) if polyarea1 == 0.0 or len(r) < 4: continue polyarea += polyarea1 radec.append(self.intersection(poly).to_radec()) if polyarea == 0.0: return (None, 0, 0.0) for ra, dec in radec: if len(ra) < 4: continue # set pixels in 'fill_mask' that are inside a polygon to True: x, y = self.wcs_inv(ra, dec, 0) poly_vert = list(zip(*[x, y])) polygon = region.Polygon(True, poly_vert) fill_mask = polygon.scan(fill_mask) if self.mask is not None: fill_mask &= self.mask data = self.image[fill_mask] if data.size < 1: return (None, 0, 0.0) # Calculate sky try: skyval, npix = self._skystat(data) except ValueError: return (None, 0, 0.0) if delta: skyval -= self._sky return skyval, npix, polyarea
class SkyGroup(object): """ Holds multiple :py:class:`SkyImage` objects whose sky background values must be adjusted together. `SkyGroup` provides methods for obtaining bounding polygon of the group of :py:class:`SkyImage` objects and to compute sky value of the group. """ def __init__(self, images, id=None, sky=0.0): if isinstance(images, SkyImage): self._images = [images] elif hasattr(images, '__iter__'): self._images = [] for im in images: if not isinstance(im, SkyImage): raise TypeError("Each element of the 'images' parameter " "must be an 'SkyImage' object.") self._images.append(im) else: raise TypeError("Parameter 'images' must be either a single " "'SkyImage' object or a list of 'SkyImage' objects") self._id = id self._update_bounding_polygon() self._sky = sky for im in self._images: im.sky += sky @property def id(self): """ Set or get `SkyImage`'s `id`. While `id` can be of any type, it is prefereble that `id` be of a type with nice string representation. """ return self._id @id.setter def id(self, id): self._id = id @property def sky(self): """ Sky background value. See `calc_sky` for more details. """ return self._sky @sky.setter def sky(self, sky): delta_sky = sky - self._sky self._sky = sky for im in self._images: im.sky += delta_sky @property def radec(self): """ Get RA and DEC of the verteces of the bounding polygon as a `~numpy.ndarray` of shape (N, 2) where N is the number of verteces + 1. """ return self._radec @property def polygon(self): """ Get image's bounding polygon. """ return self._polygon def intersection(self, skyimage): """ Compute intersection of this `SkyImage` object and another `SkyImage`, `SkyGroup`, or :py:class:`~stsci.sphere.polygon.SphericalPolygon` object. Parameters ---------- skyimage : SkyImage, SkyGroup, SphericalPolygon Another object that should be intersected with this `SkyImage`. Returns ------- polygon : SphericalPolygon A :py:class:`~stsci.sphere.polygon.SphericalPolygon` that is the intersection of this `SkyImage` and `skyimage`. """ if isinstance(skyimage, (SkyImage, SkyGroup)): return self._polygon.intersection(skyimage.polygon) else: return self._polygon.intersection(skyimage) def _update_bounding_polygon(self): polygons = [im.polygon for im in self._images] if len(polygons) == 0: self._polygon = SphericalPolygon([]) self._radec = [] else: self._polygon = SphericalPolygon.multi_union(polygons) self._radec = list(self._polygon.to_radec()) def __len__(self): return len(self._images) def __getitem__(self, idx): return self._images[idx] def __setitem__(self, idx, value): if not isinstance(value, SkyImage): raise TypeError("Item must be of 'SkyImage' type") value.sky += self._sky self._images[idx] = value self._update_bounding_polygon() def __delitem__(self, idx): del self._images[idx] if len(self._images) == 0: self._sky = 0.0 self._id = None self._update_bounding_polygon() def __iter__(self): for image in self._images: yield image def insert(self, idx, value): """Inserts a `SkyImage` into the group. """ if not isinstance(value, SkyImage): raise TypeError("Item must be of 'SkyImage' type") value.sky += self._sky self._images.insert(idx, value) self._update_bounding_polygon() def append(self, value): """Appends a `SkyImage` to the group. """ if not isinstance(value, SkyImage): raise TypeError("Item must be of 'SkyImage' type") value.sky += self._sky self._images.append(value) self._update_bounding_polygon() def calc_sky(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if len(self._images) == 0: return (None, 0, 0.0) wght = 0 area = 0.0 if overlap is None: # compute minimum sky across all images in the group: wsky = None for image in self._images: # make sure all images have the same background: image.background = self._sky sky, npix, imarea = image.calc_sky(overlap=None, delta=delta) if sky is None: continue if wsky is None or wsky > sky: wsky = sky wght = npix area = imarea return (wsky, wght, area) ################################################ ## compute weighted sky in various overlaps: ## ################################################ wsky = 0.0 for image in self._images: # make sure all images have the same background: image.background = self._sky sky, npix, area1 = image.calc_sky(overlap=overlap, delta=delta) area += area1 if sky is not None and npix > 0: pix_area = npix * image.pix_area wsky += sky * pix_area wght += pix_area if wght == 0.0 or area == 0.0: return (None, wght, area) else: return (wsky / wght, wght, area)
def __init__(self, image, wcs_fwd, wcs_inv, pix_area=1.0, convf=1.0, mask=None, id=None, skystat=None, stepsize=None, meta=None): """ Initializes the SkyImage object. Parameters ---------- image : numpy.ndarray A 2D array of image data. wcs_fwd : function "forward" pixel-to-world transformation function. wcs_inv : function "inverse" world-to-pixel transformation function. pix_area : float, optional Average pixel's sky area. convf : float, optional Conversion factor that when multiplied to `image` data converts the data to "uniform" (across multiple images) surface brightness units. .. note:: The functionality to support this conversion is not yet implemented and at this moment `convf` is ignored. mask : numpy.ndarray A 2D array that indicates what pixels in the input `image` should be used for sky computations (``1``) and which pixels should **not** be used for sky computations (``0``). id : anything The value of this parameter is simple stored within the `SkyImage` object. While it can be of any type, it is prefereble that `id` be of a type with nice string representation. skystat : callable, None, optional A callable object that takes a either a 2D image (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and returns a tuple of two values: some statistics (e.g., mean, median, etc.) and number of pixels/values from the input image used in computing that statistics. When `skystat` is not set, `SkyImage` will use :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object to perform sky statistics on image data. stepsize : int, None, optional Spacing between vertices of the image's bounding polygon. Default value of `None` creates bounding polygons with four vertices corresponding to the corners of the image. meta : dict, None, optional A dictionary of various items to be stored within the `SkyImage` object. """ self.image = image self.convf = convf self.meta = meta self._id = id self._pix_area = pix_area # WCS self.wcs_fwd = wcs_fwd self.wcs_inv = wcs_inv # initial sky value: self._sky = 0.0 # check that mask has the same shape as image: if mask is None: self.mask = None else: if image is None: raise ValueError("'mask' must be None when 'image' is None") self.mask = np.asanyarray(mask, dtype=np.bool) if self.mask.shape != image.shape: raise ValueError("'mask' must have the same shape as 'image'.") # create spherical polygon bounding the image if image is None or wcs_fwd is None or wcs_inv is None: self._radec = [(np.array([]), np.array([]))] self._polygon = SphericalPolygon([]) self._poly_area = 0.0 else: self.calc_bounding_polygon(stepsize) # set sky statistics function (NOTE: it must return statistics and # the number of pixels used after clipping) if skystat is None: self.set_builtin_skystat() else: self.skystat = skystat
class SkyImage(object): """ Container that holds information about properties of a *single* image such as: * image data; * WCS of the chip image; * bounding spherical polygon; * id; * pixel area; * sky background value; * sky statistics parameters; * mask associated image data indicating "good" (1) data. """ def __init__(self, image, wcs_fwd, wcs_inv, pix_area=1.0, convf=1.0, mask=None, id=None, skystat=None, stepsize=None, meta=None): """ Initializes the SkyImage object. Parameters ---------- image : numpy.ndarray A 2D array of image data. wcs_fwd : function "forward" pixel-to-world transformation function. wcs_inv : function "inverse" world-to-pixel transformation function. pix_area : float, optional Average pixel's sky area. convf : float, optional Conversion factor that when multiplied to `image` data converts the data to "uniform" (across multiple images) surface brightness units. .. note:: The functionality to support this conversion is not yet implemented and at this moment `convf` is ignored. mask : numpy.ndarray A 2D array that indicates what pixels in the input `image` should be used for sky computations (``1``) and which pixels should **not** be used for sky computations (``0``). id : anything The value of this parameter is simple stored within the `SkyImage` object. While it can be of any type, it is prefereble that `id` be of a type with nice string representation. skystat : callable, None, optional A callable object that takes a either a 2D image (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and returns a tuple of two values: some statistics (e.g., mean, median, etc.) and number of pixels/values from the input image used in computing that statistics. When `skystat` is not set, `SkyImage` will use :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object to perform sky statistics on image data. stepsize : int, None, optional Spacing between vertices of the image's bounding polygon. Default value of `None` creates bounding polygons with four vertices corresponding to the corners of the image. meta : dict, None, optional A dictionary of various items to be stored within the `SkyImage` object. """ self.image = image self.convf = convf self.meta = meta self._id = id self._pix_area = pix_area # WCS self.wcs_fwd = wcs_fwd self.wcs_inv = wcs_inv # initial sky value: self._sky = 0.0 # check that mask has the same shape as image: if mask is None: self.mask = None else: if image is None: raise ValueError("'mask' must be None when 'image' is None") self.mask = np.asanyarray(mask, dtype=np.bool) if self.mask.shape != image.shape: raise ValueError("'mask' must have the same shape as 'image'.") # create spherical polygon bounding the image if image is None or wcs_fwd is None or wcs_inv is None: self._radec = [(np.array([]), np.array([]))] self._polygon = SphericalPolygon([]) self._poly_area = 0.0 else: self.calc_bounding_polygon(stepsize) # set sky statistics function (NOTE: it must return statistics and # the number of pixels used after clipping) if skystat is None: self.set_builtin_skystat() else: self.skystat = skystat @property def id(self): """ Set or get `SkyImage`'s `id`. While `id` can be of any type, it is prefereble that `id` be of a type with nice string representation. """ return self._id @id.setter def id(self, id): self._id = id @property def pix_area(self): """ Set or get mean pixel area. """ return self._pix_area @pix_area.setter def pix_area(self, pix_area): self._pix_area = pix_area @property def poly_area(self): """ Get bounding polygon area in srad units. """ return self._poly_area @property def sky(self): """ Sky background value. See `calc_sky` for more details. """ return self._sky @sky.setter def sky(self, sky): self._sky = sky @property def radec(self): """ Get RA and DEC of the verteces of the bounding polygon as a `~numpy.ndarray` of shape (N, 2) where N is the number of verteces + 1. """ return self._radec @property def polygon(self): """ Get image's bounding polygon. """ return self._polygon def intersection(self, skyimage): """ Compute intersection of this `SkyImage` object and another `SkyImage`, `SkyGroup`, or :py:class:`~stsci.sphere.polygon.SphericalPolygon` object. Parameters ---------- skyimage : SkyImage, SkyGroup, SphericalPolygon Another object that should be intersected with this `SkyImage`. Returns ------- polygon : SphericalPolygon A :py:class:`~stsci.sphere.polygon.SphericalPolygon` that is the intersection of this `SkyImage` and `skyimage`. """ if isinstance(skyimage, (SkyImage, SkyGroup)): return self._polygon.intersection(skyimage.polygon) else: return self._polygon.intersection(skyimage) def calc_bounding_polygon(self, stepsize=None): """ Compute image's bounding polygon. Parameters ---------- stepsize : int, None, optional Indicates the maximum separation between two adjacent vertices of the bounding polygon along each side of the image. Corners of the image are included automatically. If `stepsize` is `None`, bounding polygon will contain only vertices of the image. """ ny, nx = self.image.shape if stepsize is None: nintx = 2 ninty = 2 else: nintx = max(2, int(np.ceil((nx + 1.0) / stepsize))) ninty = max(2, int(np.ceil((ny + 1.0) / stepsize))) xs = np.linspace(-0.5, nx - 0.5, nintx, dtype=np.float) ys = np.linspace(-0.5, ny - 0.5, ninty, dtype=np.float)[1:-1] nptx = xs.size npty = ys.size npts = 2 * (nptx + npty) borderx = np.empty((npts + 1,), dtype=np.float) bordery = np.empty((npts + 1,), dtype=np.float) # "bottom" points: borderx[:nptx] = xs bordery[:nptx] = -0.5 # "right" sl = np.s_[nptx:nptx + npty] borderx[sl] = nx - 0.5 bordery[sl] = ys # "top" sl = np.s_[nptx + npty:2 * nptx + npty] borderx[sl] = xs[::-1] bordery[sl] = ny - 0.5 # "left" sl = np.s_[2 * nptx + npty:-1] borderx[sl] = -0.5 bordery[sl] = ys[::-1] # close polygon: borderx[-1] = borderx[0] bordery[-1] = bordery[0] ra, dec = self.wcs_fwd(borderx, bordery, 0) # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or # dec[0] != dec[-1] (even though we close the polygon in the # previous two lines). Then SphericalPolygon fails because # points are not closed. Threfore we force it to be closed: ra[-1] = ra[0] dec[-1] = dec[0] self._radec = [(ra, dec)] self._polygon = SphericalPolygon.from_radec(ra, dec) self._poly_area = np.fabs(self._polygon.area()) @property def skystat(self): """ Stores/retrieves a callable object that takes a either a 2D image (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and returns a tuple of two values: some statistics (e.g., mean, median, etc.) and number of pixels/values from the input image used in computing that statistics. When `skystat` is not set, `SkyImage` will use :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object to perform sky statistics on image data. """ return self._skystat @skystat.setter def skystat(self, skystat): self._skystat = skystat def set_builtin_skystat(self, skystat='median', lower=None, upper=None, nclip=5, lsigma=4.0, usigma=4.0, binwidth=0.1): """ Replace already set `skystat` with a "built-in" version of a statistics callable object used to measure sky background. See :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` for the parameter description. """ self._skystat = SkyStats( skystat=skystat, lower=lower, upper=upper, nclip=nclip, lsig=lsigma, usig=usigma, binwidth=binwidth ) # TODO: due to a bug in the sphere package, see # https://github.com/spacetelescope/sphere/issues/74 # intersections with polygons formed as union does not work. # For this reason I re-implement 'calc_sky' below with # a workaround for the bug. # The original implementation (now called ``_calc_sky_orig`` # should replace current 'calc_sky' once the bug is fixed. # def calc_sky(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if overlap is None: if self.mask is None: data = self.image else: data = self.image[self.mask] polyarea = self.poly_area else: fill_mask = np.zeros(self.image.shape, dtype=bool) if isinstance(overlap, SkyImage): intersection = self.intersection(overlap) polyarea = np.fabs(intersection.area()) radec = list(intersection.to_radec()) elif isinstance(overlap, SkyGroup): radec = [] polyarea = 0.0 for im in overlap: intersection = self.intersection(im) polyarea1 = np.fabs(intersection.area()) if polyarea1 == 0.0: continue polyarea += polyarea1 radec += list(intersection.to_radec()) elif isinstance(overlap, SphericalPolygon): radec = [] polyarea = 0.0 for p in overlap._polygons: intersection = self.intersection(SphericalPolygon([p])) polyarea1 = np.fabs(intersection.area()) if polyarea1 == 0.0: continue polyarea += polyarea1 radec += list(intersection.to_radec()) else: # assume a list of (ra, dec) tuples: radec = [] polyarea = 0.0 for r, d in overlap: poly = SphericalPolygon.from_radec(r, d) polyarea1 = np.fabs(poly.area()) if polyarea1 == 0.0 or len(r) < 4: continue polyarea += polyarea1 radec.append(self.intersection(poly).to_radec()) if polyarea == 0.0: return (None, 0, 0.0) for ra, dec in radec: if len(ra) < 4: continue # set pixels in 'fill_mask' that are inside a polygon to True: x, y = self.wcs_inv(ra, dec, 0) poly_vert = list(zip(*[x, y])) polygon = region.Polygon(True, poly_vert) fill_mask = polygon.scan(fill_mask) if self.mask is not None: fill_mask &= self.mask data = self.image[fill_mask] if data.size < 1: return (None, 0, 0.0) # Calculate sky try: skyval, npix = self._skystat(data) except ValueError: return (None, 0, 0.0) if delta: skyval -= self._sky return skyval, npix, polyarea def _calc_sky_orig(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if overlap is None: if self.mask is None: data = self.image else: data = self.image[self.mask] polyarea = self.poly_area else: fill_mask = np.zeros(self.image.shape, dtype=bool) if isinstance(overlap, (SkyImage, SkyGroup, SphericalPolygon)): intersection = self.intersection(overlap) polyarea = np.fabs(intersection.area()) radec = intersection.to_radec() else: # assume a list of (ra, dec) tuples: radec = [] polyarea = 0.0 for r, d in overlap: poly = SphericalPolygon.from_radec(r, d) polyarea1 = np.fabs(poly.area()) if polyarea1 == 0.0 or len(r) < 4: continue polyarea += polyarea1 radec.append(self.intersection(poly).to_radec()) if polyarea == 0.0: return (None, 0, 0.0) for ra, dec in radec: if len(ra) < 4: continue # set pixels in 'fill_mask' that are inside a polygon to True: x, y = self.wcs_inv(ra, dec, 0) poly_vert = list(zip(*[x, y])) polygon = region.Polygon(True, poly_vert) fill_mask = polygon.scan(fill_mask) if self.mask is not None: fill_mask &= self.mask data = self.image[fill_mask] if data.size < 1: return (None, 0, 0.0) # Calculate sky try: skyval, npix = self._skystat(data) except ValueError: return (None, 0, 0.0) if delta: skyval -= self._sky return skyval, npix, polyarea def copy(self): """ Return a shallow copy of the `SkyImage` object. """ si = SkyImage( image=None, wcs_fwd=self.wcs_fwd, wcs_inv=self.wcs_inv, pix_area=self.pix_area, convf=self.convf, mask=None, id=self.id, stepsize=None, meta=self.meta ) si.image = self.image si.mask = self.mask si._radec = self._radec si._polygon = self._polygon si._poly_area = self._poly_area si.sky = self.sky return si
def calc_bounding_polygon(self, stepsize=None): """ Compute image's bounding polygon. Parameters ---------- stepsize : int, None, optional Indicates the maximum separation between two adjacent vertices of the bounding polygon along each side of the image. Corners of the image are included automatically. If `stepsize` is `None`, bounding polygon will contain only vertices of the image. """ ny, nx = self.image.shape if stepsize is None: nintx = 2 ninty = 2 else: nintx = max(2, int(np.ceil((nx + 1.0) / stepsize))) ninty = max(2, int(np.ceil((ny + 1.0) / stepsize))) xs = np.linspace(-0.5, nx - 0.5, nintx, dtype=np.float) ys = np.linspace(-0.5, ny - 0.5, ninty, dtype=np.float)[1:-1] nptx = xs.size npty = ys.size npts = 2 * (nptx + npty) borderx = np.empty((npts + 1,), dtype=np.float) bordery = np.empty((npts + 1,), dtype=np.float) # "bottom" points: borderx[:nptx] = xs bordery[:nptx] = -0.5 # "right" sl = np.s_[nptx:nptx + npty] borderx[sl] = nx - 0.5 bordery[sl] = ys # "top" sl = np.s_[nptx + npty:2 * nptx + npty] borderx[sl] = xs[::-1] bordery[sl] = ny - 0.5 # "left" sl = np.s_[2 * nptx + npty:-1] borderx[sl] = -0.5 bordery[sl] = ys[::-1] # close polygon: borderx[-1] = borderx[0] bordery[-1] = bordery[0] ra, dec = self.wcs_fwd(borderx, bordery, 0) # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or # dec[0] != dec[-1] (even though we close the polygon in the # previous two lines). Then SphericalPolygon fails because # points are not closed. Threfore we force it to be closed: ra[-1] = ra[0] dec[-1] = dec[0] self._radec = [(ra, dec)] self._polygon = SphericalPolygon.from_radec(ra, dec) self._poly_area = np.fabs(self._polygon.area())
def __init__(self, image, ext, dq_bits=0, dqimage=None, dqext=None, usermask=None, usermask_ext=None): """ Parameters ---------- image : ImageRef An :py:class:`~stsci.skypac.utils.ImageRef` object that refers to an open FITS file ext : tuple, int, str Extension specification in the `image` the `SkyLineMember` object will be associated with. An int `ext` specifies extension number. A tuple in the form (str, int) specifies extension name and number. A string `ext` specifies extension name and the extension version is assumed to be 1. See documentation for `astropy.io.fits.getData` for examples. dq_bits : int, None (Default = 0) Integer sum of all the DQ bit values from the input `image`'s DQ array that should be considered "good" when building masks for sky computations. For example, if pixels in the DQ array can be combinations of 1, 2, 4, and 8 flags and one wants to consider DQ "defects" having flags 2 and 4 as being acceptable for sky computations, then `dq_bits` should be set to 2+4=6. Then a DQ pixel having values 2,4, or 6 will be considered a good pixel, while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as a "bad" pixel. | Default value (0) will make *all* non-zero pixels in the DQ mask to be considered "bad" pixels, and the corresponding image pixels will not be used for sky computations. | Set `dq_bits` to `None` to turn off the use of image's DQ array for sky computations. .. note:: DQ masks (if used), *will be* combined with user masks specified by the `usermask` parameter. dqimage : ImageRef An :py:class:`~stsci.skypac.utils.ImageRef` object that refers to an open FITS file that has DQ data of the input `image`. .. note:: When DQ data are located in the same FITS file as the science image data (e.g., HST/ACS, HST/WFC3, etc.), `dqimage` may point to the same :py:class:`~stsci.skypac.utils.ImageRef` object. In this case the reference count of the \ :py:class:`~stsci.skypac.utils.ImageRef` object must be increased adequately. dqext : tuple, int, str Extension specification of the `dqimage` that contains `image`'s DQ information. See help for `ext` for more details on acceptable formats for this parameter. usermask : ImageRef An :py:class:`~stsci.skypac.utils.ImageRef` object that refers to an open FITS file that has user mask data that indicate what pixels in the input `image` should be used for sky computations (``1``) and which pixels should **not** be used for sky computations (``0``). usermask_ext : tuple, int, str Extension specification of the `usermask` mask file that contains user's mask data that should be associated with the input `image` and `ext`. See help for `ext` for more details on acceptable formats for this parameter. """ assert(hasattr(self.__class__, '_initialized') and \ self.__class__._initialized) self._reset() # check that input images and extensions are valid -- # either integers or tuples of strings and integers, e.g., ('sci',1): _check_valid_imgext(image, 'image', ext, 'ext', can_img_be_None=False) if dq_bits is not None: if dqimage is None: dq_bits = 0 else: _check_valid_imgext(dqimage, 'dqimage', dqext, 'dqext') _check_valid_imgext(usermask, 'usermask', usermask_ext, 'usermask_ext') # get telescope, instrument, and detector info: self.telescope, self.instrument, self.detector = get_instrument_info( image, ext) # check dq_bits: if dq_bits is not None and not isinstance(dq_bits, int): if image: dqimage.release() if usermask: usermask.release() if dqimage: dqimage.release() raise TypeError( "Argument 'dq_bits' must be either an integer or None.") # buld mask: self._buildMask(image.original_fname, ext, dq_bits, dqimage, dqext, usermask, usermask_ext) if dqimage: dqimage.release() if usermask: usermask.release() # save file, user mask, and DQ extension info: self._fname = image.original_fname self._basefname = basename(self._fname) self._image = image self._ext = ext self._can_free_image = image.can_reload_data and self.optimize != 'speed' # check extension and create a string representation: try: extstr = ext2str(ext) except ValueError: raise ValueError("Unexpected extension type \'{}\' for file {}.".\ format(ext,self._basefname)) self._id = "{:s}[{:s}]".format(self._basefname, extstr) # extract WCS for bounding-box computation try: if hasattr(image.hdu[ext], 'wcs'): self._wcs = image.hdu[ext].wcs else: if self.telescope in supported_telescopes: self._wcs = wcsutil.HSTWCS(image.hdu, ext) else: self._wcs = pywcs.WCS(image.hdu[ext].header, image.hdu) if self._wcs is None: raise Exception("Invalid WCS.") except: msg = "Unable to obtain WCS information for the file {:s}." \ .format(self._id) self._ml.error(msg) self._ml.flush() self._release_all() raise # determine pixel scale: self._get_pixel_scale() # see if image data are in counts or count-rate # and compute count(-rate) to flux (per arcsec^2) conversion factor: self._brightness_conv_from_hdu(image.hdu, self._idcscale) # process Sky user's keyword and its value: self._init_skyuser(image.hdu[ext].header) # Set polygon to be the bounding box of the chip: self._polygon = SphericalPolygon.from_wcs(self.wcs, steps=1)
class SkyGroup(object): """ Holds multiple :py:class:`SkyImage` objects whose sky background values must be adjusted together. `SkyGroup` provides methods for obtaining bounding polygon of the group of :py:class:`SkyImage` objects and to compute sky value of the group. """ def __init__(self, images, id=None, sky=0.0): if isinstance(images, SkyImage): self._images = [images] elif hasattr(images, '__iter__'): self._images = [] for im in images: if not isinstance(im, SkyImage): raise TypeError("Each element of the 'images' parameter " "must be an 'SkyImage' object.") self._images.append(im) else: raise TypeError( "Parameter 'images' must be either a single " "'SkyImage' object or a list of 'SkyImage' objects") self._id = id self._update_bounding_polygon() self._sky = sky for im in self._images: im.sky += sky @property def id(self): """ Set or get `SkyImage`'s `id`. While `id` can be of any type, it is prefereble that `id` be of a type with nice string representation. """ return self._id @id.setter def id(self, id): self._id = id @property def sky(self): """ Sky background value. See `calc_sky` for more details. """ return self._sky @sky.setter def sky(self, sky): delta_sky = sky - self._sky self._sky = sky for im in self._images: im.sky += delta_sky @property def radec(self): """ Get RA and DEC of the verteces of the bounding polygon as a `~numpy.ndarray` of shape (N, 2) where N is the number of verteces + 1. """ return self._radec @property def polygon(self): """ Get image's bounding polygon. """ return self._polygon def intersection(self, skyimage): """ Compute intersection of this `SkyImage` object and another `SkyImage`, `SkyGroup`, or :py:class:`~stsci.sphere.polygon.SphericalPolygon` object. Parameters ---------- skyimage : SkyImage, SkyGroup, SphericalPolygon Another object that should be intersected with this `SkyImage`. Returns ------- polygon : SphericalPolygon A :py:class:`~stsci.sphere.polygon.SphericalPolygon` that is the intersection of this `SkyImage` and `skyimage`. """ if isinstance(skyimage, (SkyImage, SkyGroup)): return self._polygon.intersection(skyimage.polygon) else: return self._polygon.intersection(skyimage) def _update_bounding_polygon(self): polygons = [im.polygon for im in self._images] if len(polygons) == 0: self._polygon = SphericalPolygon([]) self._radec = [] else: self._polygon = SphericalPolygon.multi_union(polygons) self._radec = list(self._polygon.to_radec()) def __len__(self): return len(self._images) def __getitem__(self, idx): return self._images[idx] def __setitem__(self, idx, value): if not isinstance(value, SkyImage): raise TypeError("Item must be of 'SkyImage' type") value.sky += self._sky self._images[idx] = value self._update_bounding_polygon() def __delitem__(self, idx): del self._images[idx] if len(self._images) == 0: self._sky = 0.0 self._id = None self._update_bounding_polygon() def __iter__(self): for image in self._images: yield image def insert(self, idx, value): """Inserts a `SkyImage` into the group. """ if not isinstance(value, SkyImage): raise TypeError("Item must be of 'SkyImage' type") value.sky += self._sky self._images.insert(idx, value) self._update_bounding_polygon() def append(self, value): """Appends a `SkyImage` to the group. """ if not isinstance(value, SkyImage): raise TypeError("Item must be of 'SkyImage' type") value.sky += self._sky self._images.append(value) self._update_bounding_polygon() def calc_sky(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if len(self._images) == 0: return (None, 0, 0.0) wght = 0 area = 0.0 if overlap is None: # compute minimum sky across all images in the group: wsky = None for image in self._images: # make sure all images have the same background: image.background = self._sky sky, npix, imarea = image.calc_sky(overlap=None, delta=delta) if sky is None: continue if wsky is None or wsky > sky: wsky = sky wght = npix area = imarea return (wsky, wght, area) ################################################ ## compute weighted sky in various overlaps: ## ################################################ wsky = 0.0 for image in self._images: # make sure all images have the same background: image.background = self._sky sky, npix, area1 = image.calc_sky(overlap=overlap, delta=delta) area += area1 if sky is not None and npix > 0: pix_area = npix * image.pix_area wsky += sky * pix_area wght += pix_area if wght == 0.0 or area == 0.0: return (None, wght, area) else: return (wsky / wght, wght, area)
class SkyImage(object): """ Container that holds information about properties of a *single* image such as: * image data; * WCS of the chip image; * bounding spherical polygon; * id; * pixel area; * sky background value; * sky statistics parameters; * mask associated image data indicating "good" (1) data. """ def __init__(self, image, wcs_fwd, wcs_inv, pix_area=1.0, convf=1.0, mask=None, id=None, skystat=None, stepsize=None, meta=None): """ Initializes the SkyImage object. Parameters ---------- image : numpy.ndarray A 2D array of image data. wcs_fwd : function "forward" pixel-to-world transformation function. wcs_inv : function "inverse" world-to-pixel transformation function. pix_area : float, optional Average pixel's sky area. convf : float, optional Conversion factor that when multiplied to `image` data converts the data to "uniform" (across multiple images) surface brightness units. .. note:: The functionality to support this conversion is not yet implemented and at this moment `convf` is ignored. mask : numpy.ndarray A 2D array that indicates what pixels in the input `image` should be used for sky computations (``1``) and which pixels should **not** be used for sky computations (``0``). id : anything The value of this parameter is simple stored within the `SkyImage` object. While it can be of any type, it is prefereble that `id` be of a type with nice string representation. skystat : callable, None, optional A callable object that takes a either a 2D image (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and returns a tuple of two values: some statistics (e.g., mean, median, etc.) and number of pixels/values from the input image used in computing that statistics. When `skystat` is not set, `SkyImage` will use :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object to perform sky statistics on image data. stepsize : int, None, optional Spacing between vertices of the image's bounding polygon. Default value of `None` creates bounding polygons with four vertices corresponding to the corners of the image. meta : dict, None, optional A dictionary of various items to be stored within the `SkyImage` object. """ self.image = image self.convf = convf self.meta = meta self._id = id self._pix_area = pix_area # WCS self.wcs_fwd = wcs_fwd self.wcs_inv = wcs_inv # initial sky value: self._sky = 0.0 # check that mask has the same shape as image: if mask is None: self.mask = None else: if image is None: raise ValueError("'mask' must be None when 'image' is None") self.mask = np.asanyarray(mask, dtype=np.bool) if self.mask.shape != image.shape: raise ValueError("'mask' must have the same shape as 'image'.") # create spherical polygon bounding the image if image is None or wcs_fwd is None or wcs_inv is None: self._radec = [(np.array([]), np.array([]))] self._polygon = SphericalPolygon([]) self._poly_area = 0.0 else: self.calc_bounding_polygon(stepsize) # set sky statistics function (NOTE: it must return statistics and # the number of pixels used after clipping) if skystat is None: self.set_builtin_skystat() else: self.skystat = skystat @property def id(self): """ Set or get `SkyImage`'s `id`. While `id` can be of any type, it is prefereble that `id` be of a type with nice string representation. """ return self._id @id.setter def id(self, id): self._id = id @property def pix_area(self): """ Set or get mean pixel area. """ return self._pix_area @pix_area.setter def pix_area(self, pix_area): self._pix_area = pix_area @property def poly_area(self): """ Get bounding polygon area in srad units. """ return self._poly_area @property def sky(self): """ Sky background value. See `calc_sky` for more details. """ return self._sky @sky.setter def sky(self, sky): self._sky = sky @property def radec(self): """ Get RA and DEC of the verteces of the bounding polygon as a `~numpy.ndarray` of shape (N, 2) where N is the number of verteces + 1. """ return self._radec @property def polygon(self): """ Get image's bounding polygon. """ return self._polygon def intersection(self, skyimage): """ Compute intersection of this `SkyImage` object and another `SkyImage`, `SkyGroup`, or :py:class:`~stsci.sphere.polygon.SphericalPolygon` object. Parameters ---------- skyimage : SkyImage, SkyGroup, SphericalPolygon Another object that should be intersected with this `SkyImage`. Returns ------- polygon : SphericalPolygon A :py:class:`~stsci.sphere.polygon.SphericalPolygon` that is the intersection of this `SkyImage` and `skyimage`. """ if isinstance(skyimage, (SkyImage, SkyGroup)): return self._polygon.intersection(skyimage.polygon) else: return self._polygon.intersection(skyimage) def calc_bounding_polygon(self, stepsize=None): """ Compute image's bounding polygon. Parameters ---------- stepsize : int, None, optional Indicates the maximum separation between two adjacent vertices of the bounding polygon along each side of the image. Corners of the image are included automatically. If `stepsize` is `None`, bounding polygon will contain only vertices of the image. """ ny, nx = self.image.shape if stepsize == None: nintx = 2 ninty = 2 else: nintx = max(2, int(np.ceil((nx + 1.0) / stepsize))) ninty = max(2, int(np.ceil((ny + 1.0) / stepsize))) xs = np.linspace(-0.5, nx - 0.5, nintx, dtype=np.float) ys = np.linspace(-0.5, ny - 0.5, ninty, dtype=np.float)[1:-1] nptx = xs.size npty = ys.size npts = 2 * (nptx + npty) borderx = np.empty((npts + 1, ), dtype=np.float) bordery = np.empty((npts + 1, ), dtype=np.float) # "bottom" points: borderx[:nptx] = xs bordery[:nptx] = -0.5 # "right" sl = np.s_[nptx:nptx + npty] borderx[sl] = nx - 0.5 bordery[sl] = ys # "top" sl = np.s_[nptx + npty:2 * nptx + npty] borderx[sl] = xs[::-1] bordery[sl] = ny - 0.5 # "left" sl = np.s_[2 * nptx + npty:-1] borderx[sl] = -0.5 bordery[sl] = ys[::-1] # close polygon: borderx[-1] = borderx[0] bordery[-1] = bordery[0] ra, dec = self.wcs_fwd(borderx, bordery, 0) # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or # dec[0] != dec[-1] (even though we close the polygon in the # previous two lines). Then SphericalPolygon fails because # points are not closed. Threfore we force it to be closed: ra[-1] = ra[0] dec[-1] = dec[0] self._radec = [(ra, dec)] self._polygon = SphericalPolygon.from_radec(ra, dec) self._poly_area = np.fabs(self._polygon.area()) @property def skystat(self): """ Stores/retrieves a callable object that takes a either a 2D image (2D `numpy.ndarray`) or a list of pixel values (a Nx1 array) and returns a tuple of two values: some statistics (e.g., mean, median, etc.) and number of pixels/values from the input image used in computing that statistics. When `skystat` is not set, `SkyImage` will use :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` object to perform sky statistics on image data. """ return self._skystat @skystat.setter def skystat(self, skystat): self._skystat = skystat def set_builtin_skystat(self, skystat='median', lower=None, upper=None, nclip=5, lsigma=4.0, usigma=4.0, binwidth=0.1): """ Replace already set `skystat` with a "built-in" version of a statistics callable object used to measure sky background. See :py:class:`~jwst_pipeline.skymatch.skystatistics.SkyStats` for the parameter description. """ self._skystat = SkyStats(skystat=skystat, lower=lower, upper=upper, nclip=nclip, lsig=lsigma, usig=usigma, binwidth=binwidth) # TODO: due to a bug in the sphere package, see # https://github.com/spacetelescope/sphere/issues/74 # intersections with polygons formed as union does not work. # For this reason I re-implement 'calc_sky' below with # a workaround for the bug. # The original implementation (now called ``_calc_sky_orig`` # should replace current 'calc_sky' once the bug is fixed. # def calc_sky(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if overlap is None: if self.mask is None: data = self.image else: data = self.image[self.mask] polyarea = self.poly_area else: fill_mask = np.zeros(self.image.shape, dtype=bool) if isinstance(overlap, SkyImage): intersection = self.intersection(overlap) polyarea = np.fabs(intersection.area()) radec = list(intersection.to_radec()) elif isinstance(overlap, SkyGroup): radec = [] polyarea = 0.0 for im in overlap: intersection = self.intersection(im) polyarea1 = np.fabs(intersection.area()) if polyarea1 == 0.0: continue polyarea += polyarea1 radec += list(intersection.to_radec()) elif isinstance(overlap, SphericalPolygon): radec = [] polyarea = 0.0 for p in overlap._polygons: intersection = self.intersection(SphericalPolygon([p])) polyarea1 = np.fabs(intersection.area()) if polyarea1 == 0.0: continue polyarea += polyarea1 radec += list(intersection.to_radec()) else: # assume a list of (ra, dec) tuples: radec = [] polyarea = 0.0 for r, d in overlap: poly = SphericalPolygon.from_radec(r, d) polyarea1 = np.fabs(poly.area()) if polyarea1 == 0.0 or len(r) < 4: continue polyarea += polyarea1 radec.append(self.intersection(poly).to_radec()) if polyarea == 0.0: return (None, 0, 0.0) for ra, dec in radec: if len(ra) < 4: continue # set pixels in 'fill_mask' that are inside a polygon to True: x, y = self.wcs_inv(ra, dec, 0) poly_vert = list(zip(*[x, y])) polygon = region.Polygon(True, poly_vert) fill_mask = polygon.scan(fill_mask) if self.mask is not None: fill_mask &= self.mask data = self.image[fill_mask] if data.size < 1: return (None, 0, 0.0) # Calculate sky try: skyval, npix = self._skystat(data) except ValueError: return (None, 0, 0.0) if delta: skyval -= self._sky return skyval, npix, polyarea def _calc_sky_orig(self, overlap=None, delta=True): """ Compute sky background value. Parameters ---------- overlap : SkyImage, SkyGroup, SphericalPolygon, list of tuples, \ None, optional Another `SkyImage`, `SkyGroup`, :py:class:`stsci.sphere.polygons.SphericalPolygon`, or a list of tuples of (RA, DEC) of vertices of a spherical polygon. This parameter is used to indicate that sky statistics should computed only in the region of intersection of *this* image with the polygon indicated by `overlap`. When `overlap` is `None`, sky statistics will be computed over the entire image. delta : bool, optional Should this function return absolute sky value or the difference between the computed value and the value of the sky stored in the `sky` property. Returns ------- skyval : float, None Computed sky value (absolute or relative to the `sky` attribute). If there are no valid data to perform this computations (e.g., because this image does not overlap with the image indicated by `overlap`), `skyval` will be set to `None`. npix : int Number of pixels used to compute sky statistics. polyarea : float Area (in srad) of the polygon that bounds data used to compute sky statistics. """ if overlap is None: if self.mask is None: data = self.image else: data = self.image[self.mask] polyarea = self.poly_area else: fill_mask = np.zeros(self.image.shape, dtype=bool) if isinstance(overlap, (SkyImage, SkyGroup, SphericalPolygon)): intersection = self.intersection(overlap) polyarea = np.fabs(intersection.area()) radec = intersection.to_radec() else: # assume a list of (ra, dec) tuples: radec = [] polyarea = 0.0 for r, d in overlap: poly = SphericalPolygon.from_radec(r, d) polyarea1 = np.fabs(poly.area()) if polyarea1 == 0.0 or len(r) < 4: continue polyarea += polyarea1 radec.append(self.intersection(poly).to_radec()) if polyarea == 0.0: return (None, 0, 0.0) for ra, dec in radec: if len(ra) < 4: continue # set pixels in 'fill_mask' that are inside a polygon to True: x, y = self.wcs_inv(ra, dec, 0) poly_vert = list(zip(*[x, y])) polygon = region.Polygon(True, poly_vert) fill_mask = polygon.scan(fill_mask) if self.mask is not None: fill_mask &= self.mask data = self.image[fill_mask] if data.size < 1: return (None, 0, 0.0) # Calculate sky try: skyval, npix = self._skystat(data) except ValueError: return (None, 0, 0.0) if delta: skyval -= self._sky return skyval, npix, polyarea def copy(self): """ Return a shallow copy of the `SkyImage` object. """ si = SkyImage(image=None, wcs_fwd=self.wcs_fwd, wcs_inv=self.wcs_inv, pix_area=self.pix_area, convf=self.convf, mask=None, id=self.id, stepsize=None, meta=self.meta) si.image = self.image si.mask = self.mask si._radec = self._radec si._polygon = self._polygon si._poly_area = self._poly_area si.sky = self.sky return si
def calc_bounding_polygon(self, stepsize=None): """ Compute image's bounding polygon. Parameters ---------- stepsize : int, None, optional Indicates the maximum separation between two adjacent vertices of the bounding polygon along each side of the image. Corners of the image are included automatically. If `stepsize` is `None`, bounding polygon will contain only vertices of the image. """ ny, nx = self.image.shape if stepsize == None: nintx = 2 ninty = 2 else: nintx = max(2, int(np.ceil((nx + 1.0) / stepsize))) ninty = max(2, int(np.ceil((ny + 1.0) / stepsize))) xs = np.linspace(-0.5, nx - 0.5, nintx, dtype=np.float) ys = np.linspace(-0.5, ny - 0.5, ninty, dtype=np.float)[1:-1] nptx = xs.size npty = ys.size npts = 2 * (nptx + npty) borderx = np.empty((npts + 1, ), dtype=np.float) bordery = np.empty((npts + 1, ), dtype=np.float) # "bottom" points: borderx[:nptx] = xs bordery[:nptx] = -0.5 # "right" sl = np.s_[nptx:nptx + npty] borderx[sl] = nx - 0.5 bordery[sl] = ys # "top" sl = np.s_[nptx + npty:2 * nptx + npty] borderx[sl] = xs[::-1] bordery[sl] = ny - 0.5 # "left" sl = np.s_[2 * nptx + npty:-1] borderx[sl] = -0.5 bordery[sl] = ys[::-1] # close polygon: borderx[-1] = borderx[0] bordery[-1] = bordery[0] ra, dec = self.wcs_fwd(borderx, bordery, 0) # TODO: for strange reasons, occasionally ra[0] != ra[-1] and/or # dec[0] != dec[-1] (even though we close the polygon in the # previous two lines). Then SphericalPolygon fails because # points are not closed. Threfore we force it to be closed: ra[-1] = ra[0] dec[-1] = dec[0] self._radec = [(ra, dec)] self._polygon = SphericalPolygon.from_radec(ra, dec) self._poly_area = np.fabs(self._polygon.area())